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DTM vs functions on N
For a partial function f write

� f (x) ↓ if x is in the domain of f ;

� f (x) ↑ if x is not in the domain of f .

ϕe(x) : N →p N is computed by the DTM with Goedel number e

Facts
� A ⊆ Nk is computably enumerable iff A is the domain of some

partial recursive function.

� A ⊆ Nk is computable iff the characteristic function of A is
recursive.

� The Diagonal Halting Problem

K := {x ∈ N : ϕx(x) ↓}

is c.e. but not computable.



Properties of recursive functions are not computable

Rice’s Theorem
Let C be a class of k-ary recursive functions. Then
{e ∈ N : ϕe ∈ C} is computable iff C = ∅ or C is the class of all
k-ary recursive functions.

Example

None of the following are computable:

� K := {x ∈ N : ϕx(x) ↓}
� F := {x ∈ N : ϕx has finite domain}
� T := {x ∈ N : ϕx is total }



The arithmetical hierarchy of subsets of N

Idea: Classify problems that are not computable by the complexity
of formulas that describe them.

Example (Diagonal halting problem K )

x ∈ K iff ϕx(x) ↓
iff ∃y (config(x , x , y))0 = t� �� �

computable predicate
stating computation
halts after y steps



Definition
Let P(x̄) be a k-ary predicate on N, n ∈ N:
� P is Σ0

n if there is a computable predicate R:

P(x̄) ≡ ∃y1∀y2∃y3 . . . ∃/∀yn� �� �
n alternating quantifiers starting with ∃

: R(x̄ , ȳ)

� P is Π0
n if there is a computable predicate R:

P(X ) ≡ ∀y1∃y2∀y3 . . . ∃/∀yn� �� �
n alternating quantifiers starting with ∀

: R(x̄ , ȳ)

� Σ0
0 = Π0

0 = computable predicates

� Δ0
n := Σ0

n ∩ Π0
n

Note
The superscript 0 denotes quantification over type-0-objects
(elements in N).



Example

1. K is Σ0
1

2. T = {e ∈ N : ϕe is total}
e ∈ T iff ∀x ϕe(x) ↓

iff ∀x ∃y (config(e, x , y))0 = t

Hence T is Π0
2.

3. F = {e ∈ N : ϕe has finite domain}
e ∈ F iff ∃z ∀y ∀x (config(e, x , y))0 = t ⇒ x ≤ z

Hence F is Σ0
2.



Arithmetical hierarchy
�

n∈NΣ0
n =

�
n∈N Π0

n (sets defined in first order arithmetic,
hence called arithmetical)

...

Σ0
2 Π0

2

Δ0
2

Σ0
1 Π0

1

Δ0
1

Question
Are all subsets of N arithmetical?



Closure properties

For proving the previous picture we need some preparation.

Lemma
Let n ≥ 1.

1. Σ0
n is closed under existential quantification, Π0

n is closed
under universal quantification.

2. Σ0
n,Π

0
n are both closed under ∧,∨, bounded quantifiers

∀x < y , ∃x < y , and substitution of total computable
functions.

3. ¬Σ0
n = Π0

n,¬Π0
n = Σ0

n



Proof sketch.
Let R be computable, P(x , z) = ∃y1 ∀y2 . . . R(x , z , y1, . . . ) be Σ0

n.

1. Claim: Q(x) := ∃z P(x , z) is Σ0
n

Q(x) ≡ ∃z ∃ y1 ∀y2 . . . R(x , z , y1, y2, . . . , yn)
≡ ∃u ∀y2 . . . R(x , (u)0, (u)1, y2 . . . , yn)

Dual argument for ∀ and Π0
n.

2. Substitution: Let f (x) total, computable.

Claim: Q(x) := P(x , f (x)) is Σ0
n

Q(x) ≡ ∃ y1 ∀y2 . . . R(x , f (x), y1, y2, . . . )� �� �
computable since R is

Conjunction: Induct on n (HW).

3. Negation: immediate.



Σ0
1 is computably enumerable

Normal Form Theorem for c.e. sets
P is c.e. iff P is Σ0

1.

Proof
⇒: Let P ⊆ Nk be c.e.

� Then P = domainϕ
(k)
e for some e (HW).

� x ∈ P iff ϕe(x) ↓
iff ∃n (config(e, x , n))0 = t� �� �

=:ϕe,n(x)↓
� P is Σ0

1 because the predicate ϕe,n(x) ↓ (“Me computes
ϕe(x) in n steps”) is computable.

⇐: Let P(x) ≡ ∃y R(x , y) for R computable.

� Then ψ(x) := µy R(x , y) is recursive.

� P = domainψ is c.e.

Dually Π0
1 is co-c.e.



Universal Σ0
n predicates

Idea: Enumerate k-ary Σ0
n predicates by a single k + 1-ary Σ0

n

predicate.

Definition
A k + 1-ary Σ0

n predicate U(e, x) is universal Σ0
n for k-ary

predicates if

1. U(e, x) is Σ0
n

2. for every k-ary Σ0
n predicate P(x) there is some e such that

P(x) ≡ U(e, x)

Universal Π0
n-predicates are defined similarly.

Example

From the last proof U(e, x) := ∃n ϕe,n(x) ↓ is universal Σ0
1.



Enumeration Theorem
For all k , n ≥ 1, universal Σ0

n- and Π0
n-predicates exist.

Proof by induction on n and k :

Base case: U(e, x) := ∃n ϕe,n(x) ↓ is universal Σ0
1 by the Normal

Form Theorem for c.e. predicates.

Note: If U(e, x) is universal Σ0
n, then ¬U(e, x) is universal Π0

n

(and conversely).

Induction step: Let U(e, y , x̄) be universal Σ0
n for k + 1-ary

predicates.
Then ∀y U(e, y , x̄) is universal Π0

n+1 for k-ary predicates since

1. it is in Π0
n+1 and

2. for every k-ary Π0
n+1-predicate P(x̄) there exists a k + 1-ary

Σ0
n-predicate Q(y , x̄) such that

P(x̄) = ∀y Q(y , x̄)



The arithmetical hierarchy does not collapse

Corollary

For each n ≥ 1 there exist Σ0
n-predicates that are not Π0

n (and
conversely).

Proof.
� Let Un(e, x) a unary universal Σ0

n-predicate.

� Then Kn(x) := Un(x , x) is Σ
0
n.

� Seeking a contradiction, suppose Kn is Π0
n. Then ¬K is Σ0

n.

� Hence ¬Kn(x) ≡ Un(e, x) for some e.

� Contradiction for x = e.


