Normal Form Theorem for recursive functions

Peter Mayr

Computability Theory, February 22, 2021

(ロ)、(型)、(E)、(E)、 E) の(()

Gödel numbering of DTM

To show that computable functions on \mathbb{N} are recursive we first encode DTMs and their configurations as natural numbers.

• Let $2 = p_0 < p_1 < p_2 < \dots$ the enumeration of all primes.

▶ $\forall x \in \mathbb{N} \setminus \{0\} \exists$ unique $x_0, x_1, \dots \in \mathbb{N}$, almost all 0:

$$x = \prod_{i \in \mathbb{N}} p_i^x$$

The exponent $(x)_i$ of p_i in x is primitive recursive.

- Recall $i \mapsto p_i$ is primitive recursive,
- (x)_i = $\mu(t < x) [p_i^{t+1} \text{ does not divide } x]$ is primitive recursive.

▶ Encode a tuple $(a_0, \ldots, a_n) \in \mathbb{N}^*$ as

$$a:=p_0^{a_0+1}\cdots p_n^{a_n+1}\in\mathbb{N}.$$

Then *n* and a_i for all $i \leq n$ are primitive recursive from *a*.

Definition

Let $M = (Q, \{0, 1\}, \Gamma, s, t, r, \delta)$ be a DTM with \blacktriangleright *n* states $Q = \{1, \dots, n\}$, \blacktriangleright tape alphabet $\Gamma = \{\gamma_0 = \Box, \gamma_1 = 1, \gamma_2 = 0, \gamma_4, \dots, \gamma_m\}$, We define

$$a_0 := 2^{|Q|} 3^{|\Gamma|} 5^s 7^t 11^r$$

and encode the *i*-th transition $\delta(q, \gamma_k) = (p, \gamma_\ell, d)$ for $1 \le i \le (n-2)m$ as

$$a_i := 2^q 3^k 5^p 7^\ell 11^{1+d}.$$

Then the prime power encoding of M is

$$\sharp(M)=\prod_{i=0}^{(n-2)m}p_i^{a_i}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Definition A configuration (q, α, k) of the DTM M is encoded as

$$\sharp(\boldsymbol{q},\alpha,\boldsymbol{k}):=2^{\boldsymbol{q}}3^{\prod_{i\in\mathbb{N}}p_{i}^{\alpha(i)}}5^{\boldsymbol{k}}$$

Note

The encoding #(M) essentially IS (the transition function of) M.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

 All constituents of #(M) and of the encoding of a configuration are primitive recursive.

Computable functions are recursive

Recall our encoding of tuples of natural numbers as strings:

Definition

Let the partial function $\varphi_e^{(k)} \colon \mathbb{N}^k \to_p \mathbb{N}$ be computed by the DTM M with $\sharp(M) = e$.

Normal Form Theorem (Kleene)

For every $k \in \mathbb{N} \setminus \{0\}$ there exists a primitive recursive predicate $T^{(k)}(e, \bar{x}, y)$ and a primitive recursive function u such that

$$\varphi_e^{(k)}(\bar{x}) = u(\mu y T^{(k)}(e,\bar{x},y)).$$

Proof sketch for k = 1. Claim 1:

 $\operatorname{succ}(c) := \sharp(\operatorname{successor} of the configuration with encoding c)$

is primitive recursive.

Let c be the encoding of a configuration. Then

•
$$q := (c)_0$$
 is its state,

• $k := (c)_2$ is the position of the head,

• $i := ((c)_1)_k$ is the index of the cell content γ_i . Then

$$\operatorname{succ}(e,c) := \begin{cases} 2^p 3^{(c)_1 \cdot p_k^{-i+j}} 5^{\max(k+d,0)} & \text{ if } \delta(q,\gamma_i) = (p,\gamma_j,d), \\ c & \text{ if } q \in \{t,r\}. \end{cases}$$

Note that p, j, d are primitive recursive from e, q, i. Claim 1 is proved.

Claim 2:

 $\operatorname{config}(e, x, n) := \sharp(\operatorname{configuration} \operatorname{of} M_e \operatorname{on input} x \operatorname{at step} n)$

is primitive recursive by the recursion scheme:

$$\begin{aligned} & \operatorname{config}(e,x,0) := 2^s 3^{\prod_{i \leq |x|} p_i^{x_i}} 5^0 \\ & \operatorname{config}(e,x,n+1) := \operatorname{succ}(\operatorname{config}(e,x,n)) \end{aligned}$$

Claim 3:

Assume M_e has computed $\varphi_e(x)$ iff it is in the accept state t. Then

$$\operatorname{halt}(e, x) := \mu n \left((\operatorname{config}(e, x, n))_0 = t \right)$$

is recursive and yields the number of steps for M_e to write $\varphi_e(x)$ on the tape and halt.

Then $\varphi_e(x)$ is primitive recursive from $\operatorname{config}(e, x, \operatorname{halt}(e, x))$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Consequences of the Normal Form Theorem

- A partial function on N is computable (by a DTM) iff it is recursive (supporting the Church-Turing thesis again).
- Kleene's *T*-predicate and the function *u* in the Normal Form Theorem are universal, i.e., independent of the function φ_e.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Recursive functions can be defined with at most one application of unbounded search μ. Corollary (Enumeration Theorem) $\psi(e, \bar{x}) := \varphi_e(\bar{x})$ is recursive.

Proof.

Immediate from the Normal Form Theorem.

Question

Why does the diagonalization argument not yield a computable function $d(x) := \varphi_x(x) + 1$ that is not recursive?

Dually to the Enumeration Theorem we have:

S^{*m*}_{*n*}-Theorem

For all $m, n \ge 1$ there exists a primitive recursive function S_n^m such that $\forall x \in \mathbb{N}, \bar{y} \in \mathbb{N}^m, \bar{z} \in \mathbb{N}^n$:

$$\varphi_{S_n^m(x,\bar{y})}(\bar{z}) = \varphi_x(\bar{y},\bar{z})$$

Proof.

Let *M* be the DTM that on input *z* simulates the DTM *M_x* on input (*ȳ*, *z̄*).

• Then $\sharp(M) =: S_n^m(x, \bar{y})$ is primitive recursive from x, \bar{y} .