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Question
Primitive recursive functions are computable. What about the
converse?

We’ll see that some functions grow too fast to be primitive
recursive.

Knuth’s up arrow notation.

a ↑n b is defined by a ↑ b := a · · · a︸ ︷︷ ︸
b

a ↑↑ b := a·
··
a︸︷︷︸

b

a ↑n+1 b := a ↑n (a ↑n . . . a)︸ ︷︷ ︸
b



Definition
For m, n ∈ N define the Ackermann function A(m, n) by

A(0, n) := n + 1
A(m + 1, 0) := A(m, 1)
A(m + 1, n + 1) := A(m,A(m + 1, n))

(Not a primitive recursion scheme as it uses recursion over itself.)

Example

A(1, n) = n + 2
A(2, n) = 2n + 3
A(3, n) = 2n+3 − 3

A(4, n) = 22
··
·2︸︷︷︸

n+3

−3

A(5, n) = 2 ↑↑↑ (n + 3)− 3



Facts

1. A(m, n) is a total, computable function.

2. A is strictly increasing in each argument.

3. A(m, n + 1) ≤ A(m + 1, n)

4. A(`,A(m, n)) < A(` + m + 2, n)

Proof ideas

1. Induction on (m, n) in lex order.

2. Induction on m, n respectively.

3. Induction on n.

4. A(`,A(m, n)) < A(` + m,A(` + m + 1, n)) =
A(` + m + 1, n + 1) ≤ A(` + m + 2, n).



Majorization Lemma

For every primitive recursive f (x̄) there exists M ∈ N such that

∀x̄ : f (x̄) < A(M,max(x̄)).

Proof by induction on the representation of f .

Base cases f = 0, s, pki are straightforward for M = 0, 1.
Induction step:
1) Composition: Let f (x̄) := g(h1(x̄ , . . . , hn(x̄))) for g , h1, . . . , hn
primitive recursive.
Let x := max(x̄). By induction assumption we have G ,H ∈ N such
that

g(ȳ) < A(G , y), hi (x̄) < A(H, x) for all i .

Then

f (x̄) < A(G ,max(hi (x̄))) < A(G ,A(H, x))) < A(G + H + 2, x).



2) Recursion scheme: Let f (x̄ , y) be defined by
f (x̄ , 0) := g(x̄)
f (x̄ , y + 1) := h(x̄ , y , f (x̄ , y))

for g , h primitive recursive.

By induction assumption we have G ,H ∈ N such that

g(x̄) < A(G , x), h(x̄ , y , z) < A(H,max(x , y , z)).

Claim: f (x̄ , y) < A(F , x + y) for F := max(G ,H) + 1 (†)
Induct on y :
Base case:

f (x̄ , 0) = g(x̄) < A(G , x) < A(F , x)

Induction step:

f (x̄ , y + 1) = h(x̄ , y , f (x̄ , y)) < A(H,max(x , y , f (x̄ , y)))

By the induction hypothesis and x , y < A(F , x + y),

max(x , y , f (x̄ , y))) < A(F , x + y).

Now Claim (†) follows from

f (x̄ , y+1) < A(H,A(F , x+y)) ≤ A(F−1,A(F , x+y)) = A(F , x+y+1).



Finally let z := max(x , y). Using Claim (†)

f (x̄ , y) < A(F , 2z) < A(F , 2z + 3) = A(F ,A(2, z)) < A(F + 4, z).

The Majorization Lemma is proved.



Corollary

The Ackermann function A(m, n) is not primitive recursive.

Proof.
Seeking a contradiction, suppose otherwise.

I Then f (n) := A(n, n) is primitive recursive.

I By the Majorization Lemma we have M ∈ N such that
f (n) < A(M, n).

I Then f (M) < A(M,M) is a contradiction.


