Ackermann function

Peter Mayr

Computability Theory, February 15, 2021

Question

Primitive recursive functions are computable. What about the converse?

We'll see that some functions grow too fast to be primitive recursive.

Knuth's up arrow notation.

$$a \uparrow^n b$$
 is defined by $a \uparrow b := \underbrace{a \cdots a}_{b}$

$$a \uparrow \uparrow b := \underbrace{a}_{b} \uparrow^n (a \uparrow^n \cdots a)$$

$$a \uparrow^{n+1} b := \underbrace{a \uparrow^n (a \uparrow^n \cdots a)}_{b}$$

Definition

For $m, n \in \mathbb{N}$ define the **Ackermann function** A(m, n) by

$$A(0, n) := n + 1$$

 $A(m+1, 0) := A(m, 1)$
 $A(m+1, n+1) := A(m, A(m+1, n))$

(Not a primitive recursion scheme as it uses recursion over itself.)

Example

$$A(1, n) = n + 2$$

$$A(2, n) = 2n + 3$$

$$A(3, n) = 2^{n+3} - 3$$

$$A(4, n) = \underbrace{2^{2}}_{n+3}^{2} - 3$$

$$A(5, n) = 2 \uparrow \uparrow \uparrow (n+3) - 3$$

Facts

- 1. A(m, n) is a total, computable function.
- 2. A is strictly increasing in each argument.
- 3. $A(m, n + 1) \leq A(m + 1, n)$
- 4. $A(\ell, A(m, n)) < A(\ell + m + 2, n)$

Proof ideas

- 1. Induction on (m, n) in lex order.
- 2. Induction on *m*, *n* respectively.
- 3. Induction on n.
- 4. $A(\ell, A(m, n)) < A(\ell + m, A(\ell + m + 1, n)) = A(\ell + m + 1, n + 1) \le A(\ell + m + 2, n).$

Majorization Lemma

For every primitive recursive $f(\bar{x})$ there exists $M \in \mathbb{N}$ such that

$$\forall \bar{x} \colon f(\bar{x}) < A(M, \max(\bar{x})).$$

Proof by induction on the representation of f.

Base cases $f = 0, s, p_i^k$ are straightforward for M = 0, 1. Induction step:

1) **Composition:** Let $f(\bar{x}) := g(h_1(\bar{x}, \dots, h_n(\bar{x})))$ for g, h_1, \dots, h_n primitive recursive.

Let $x:=\max(\bar{x})$. By induction assumption we have $G,H\in\mathbb{N}$ such that

$$g(\bar{y}) < A(G, y), h_i(\bar{x}) < A(H, x)$$
 for all i .

Then

$$f(\bar{x}) < A(G, \max(h_i(\bar{x}))) < A(G, A(H, x))) < A(G + H + 2, x).$$

2) **Recursion scheme:** Let $f(\bar{x}, y)$ be defined by

$$f(\bar{x},0) := g(\bar{x})$$

 $f(\bar{x},y+1) := h(\bar{x},y,f(\bar{x},y))$

for g, h primitive recursive.

By induction assumption we have $G, H \in \mathbb{N}$ such that

$$g(\bar{x}) < A(G,x), h(\bar{x},y,z) < A(H,\max(x,y,z)).$$

Claim:
$$f(\bar{x}, y) < A(F, x + y)$$
 for $F := \max(G, H) + 1$ (†)

Induct on y:

Base case:

$$f(\bar{x},0) = g(\bar{x}) < A(G,x) < A(F,x)$$

Induction step:

$$f(\bar{x}, y + 1) = h(\bar{x}, y, f(\bar{x}, y)) < A(H, \max(x, y, f(\bar{x}, y)))$$

By the induction hypothesis and x, y < A(F, x + y),

$$\max(x, y, f(\bar{x}, y))) < A(F, x + y).$$

Now Claim (†) follows from

$$f(\bar{x}, y+1) < A(H, A(F, x+y)) \le A(F-1, A(F, x+y)) = A(F, x+y+1).$$

Finally let $z := \max(x, y)$. Using Claim (†)

$$f(\bar{x},y) < A(F,2z) < A(F,2z+3) = A(F,A(2,z)) < A(F+4,z).$$

The Majorization Lemma is proved.

Corollary

The Ackermann function A(m, n) is not primitive recursive.

Proof.

Seeking a contradiction, suppose otherwise.

- ▶ Then f(n) := A(n, n) is primitive recursive.
- ▶ By the Majorization Lemma we have $M \in \mathbb{N}$ such that f(n) < A(M, n).
- ▶ Then f(M) < A(M, M) is a contradiction.

