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Rewriting systems

Book, Otto. String-rewriting Systems. 1993.

Example
Presentation of a monoid (semigroup with 1):
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Definition
> A string rewriting system (SRS) R over a finite alphabet X
is a subset of £* x L* (rewriting rules).

» Foru,vex*
u—-rv

if I r) e R3Ix,y € X" u=xly,v=xry.
> &g s the reflexive, transitive, symmetric closure of —g.
Then &g is a congruence on the free monoid (X*, ).

> Mg :=X*/ &g is the monoid presented by (7 R).



Word problem for semigroups

Word problem for SRS R on ¥

Input: v, ve¥*

. *
Question: Is u <>g v?

Theorem (Post 1947)
There exist a finite SRS with undecidable word problem (c.e. but
not computable).

Proof idea
Encode DTM as SRS in the following.



DTM as SRS
Let M = (Q,X%,T,s,t,r,0) be a DTM with bi-infinite tape
Consider a configuration (g, ....ag...ar..., n) as string
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Define SRS S(M). For 5, a,bel,q,q € Q let

1. ga— a'q if 6(g,a) = (q¢',4,+1)
2. gh— a'qd'h if 6(q,-) =(q',4,+1) brncoding Avagliss
3. bga — q¢'bd if 0(g,a) = (¢, 4, =1) I coh'\gut-ﬁll\olﬁ .
4. hga — hq'.d if 6(g,®) = (q',a,-1)

5ot t '
6. tha— ﬁhﬂig}f;"g
7. atth — t1h “© Laqm
8. htih — to



Rewriting configurations

Lemma
For u,v,u/,v' € T* and q,¢' € Q TFAE:
1. (g, -uv-, position of vi) Fy (¢, —uv/ . )

2. dm,n € N: hugvh i>5(/\//) h"u'q'v! "h

Proof.
1. = 2. is clear by definition of the rewriting rules 1-4.
2. = 1. follows since in item 2. only rules 1-4 are applied as no

t1, to are introduced. OJ
Corollary
Let x € T*. Then@ i>5(M)§§ff x € L(M).
slovding AR
Proof. w.,r;& colig,

t» can only be introduced from an accepting configuration via rules
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Reducing equivalence to rewriting

Lemma
Let w € Q*. Then w <i>5(M) to iff w _*>S(I\/I) t.

Proof. & ¢esy
=: Assume w QS(M) t.

> Either w = t> or w = hugvh for some u,v € T*,q € QU {t1}
since no rule changes the number of “states” Q U {t1, ta}.

» Consider a shortest path connecting w # t> and t, via the
symmetric closure < = + U —:

w=hugvh=wy o w1 < - w==b

» Then wyx_1 = htih — th = wy.
» Let ¢/ € N minimal such that wy contains t;. Then

wy_1 = hup_1tvy_1h — hupy_1tivp_1h = wp.

» Clearly wy_1 5ty



v

It remains to show w - wy_i.
Note that wy_» — wy_1 since M stops when reaching t.

Let m € N maximal such that
* *
W — Wm_1<Wn — Wny1l — Wpq

Then wpy—1 = Wyt represents the unique successor
configuration of w,,.

We can skip w,, above to get a shorter path from w to t.

Hence our minimal path from w to t, cannot contain any <.
Thus w =5 t. O



SRS are equivalent to DTM

Corollary
Let x € £*. Then hsxh &gy t2 iff x € L(M).

Note

» The language of any DTM many-one reduces to the word
problem of the corresponding SRS.

» Conversely word problems can clearly be solved by NTM.

» SRS are a Turing complete model of computation (exactly
as powerful as DTM, A-calculus, . ..).



Word problem for semigroups is undecidable

For a DTM with not computable language (e.g. AP), the
corresponding SRS is not computable either. We proved:

Theorem (Post 1947)

There exist a finite SRS with undecidable word problem (c.e. but
not computable).

Note

» Non-trivial properties of finite SRS are undecidable (Rice's
Theorem).

» Undecidability of the word problem for groups follows with
similar ideas but much harder details (Novikov 1955).

» 1-relator groups have decidable word problem (Magnus 1932).

» Matiyasevich (1967) gave an undecidable SRS with 2
generators and 3 relations.

» Open: Are 1-relator SRS decidable?
1-relator inverse monoids have undecidable word problem



