
Universal TMs and the acceptance problem

Peter Mayr

Computability Theory, February 5, 2021

Notation

Just like computing functions can be reduced to a membership
question for languages, so can the checking of properties:

Example

Decision problem P :

� Input: w ∈ {1}∗
� Question: Is |w | a square?

Identitfy P with the set of its “yes”-instances,

P = {w ∈ {1}∗ : |w | is a square}.

We identify

� decision problem = language

� decidable = computable

Encoding DTMs
To present mathematical objects (tuples, graphs, TMs, . . .) as
input to TMs we encode them as strings, wlog over Σ = {0, 1}.
Definition
Let M = (Q, {0, 1}, Γ, s, t, r , δ) be a DTM with

� n states Q = {1, 11, . . . , 1n},
� tape alphabet Γ = {0, 1, , γ4, . . . , γm} with letters

represented in unary, [γi] := 1i ,

� directions +1 and −1 represented by [+1] := 1 and
[−1] := 11, resp.

Then our encoding [M] of M begins with

1|Q|01|Γ|0s0t0r0

followed by the encoding of all transitions δ(q, a) = (p, b, d) as

q0[a]0p0[b]0[d]0

Note
The encoding [M] essentially IS (the transition function of) M.

Theorem
The language {[M] : M is a DTM} is computable.

Proof.
Given w ∈ {0, 1}∗ a DTM can check whether w is the code of a
DTM as defined above.

Encoding pairs

Definition
Let Σ := {0, 1}, and x = x1 . . . xk , y = y1 . . . y� ∈ Σ∗.
Then (x , y) can be encoded as the string of length 2(k + �+ 1),

[x , y] := x1x1 . . . xkxk01y1y1 . . . y�y�

Lemma

1. The language {[x , y] : x , y ∈ Σ∗} is computable.

2. There exist computable partial functions p1, p2 : Σ
∗ →p Σ∗

such that p1([x , y]) = x and p2([x , y]) = y .

This extends to encoding n-tuples via
(a1, . . . , an) = (. . . ((a1, a2), a2) . . . an).

Universal Turing machines

Question
Instead of devising a specific DTM M for every task, is there a
single DTM U that can simulate any other?

More precisely:

Definition
A DTM U is universal if on input ([M], x) for a DTM M

� U accepts if M accepts x ,

� U rejects if M rejects x ,

� U loops if M loops on x .

Here [M] is like a program that U runs on x .

Theorem
Universal DTMs exist.

Proof.
Sketch universal U as multitape TM with Σ = {0, 1}, Γ = {0, 1, }:

� Tape 1 holds input ([M], x).

� Tape 2 holds the state of M (as [qi] = 1i).

� Tape 3 simulates the tape of M (encoding M’s tape alphabet
[γi] = 1i0.

� Tape 4 holds the position of M’s head.

On input (c , x):

1. U checks that c is proper TM-code c = [M] (else rejects).

2. U writes s, x , 0 on tapes 2,3,4, respectively.

3. To simulate a step of M, search for appropriate transition on
tape 1 and update tapes 2,3,4 accordingly.

4. U accepts/rejects/loops if M accepts/rejects/loops on x .

Acceptance Problem

Definition
The language of a universal TM is the acceptance problem,

AP := {([M], x) : M is a DTM that accepts x}.

Theorem
AP is computably enumerable.

A non-computably enumerable language

Idea: For L to be non-c.e. we need for every DTM M some
x ∈ Σ∗ such that

x ∈ L iff M does not accept x .

What if we simply choose x := [M] above?

Definition
The self acceptance problem is

SAP := {([M], [M]) : M is a DTM that accepts [M]}.

Theorem
The complement SAP is not c.e. (and hence not computable).

Proof.
Seeking a contradiction, suppose M is a DTM with L(M) = SAP.
Consider 2 cases:

� If M accepts [M], then [M] ∈ SAP, which means M does not
accept [M].

� If M does not accept [M], then [M] ∈ SAP, which means M
accepts [M].

In each case we obtain a contradiction. Hence such an M cannot
exist.

Note
This proof technique is called diagonalization: For an
enumeration of all DTMs M1,M2, . . . , SAP is different

� from L(M1) at [M1],

� from L(M2) at [M2],

� . . .

Reductions

Using that SAP is not computable, we can show that AP is neither.

Theorem
AP is not computable.

Proof.
Seeking a contradiction, suppose U is a halting DTM with
L(U) = AP.
Then SAP is computable by the following DTM N:

� On input [M] run U on ([M], [M]).

� If U accepts ([M], [M]), then N accepts.

� If U rejects ([M], [M]), then N rejects.

Then L(N) = SAP.
Since U is halting, so is N. Contradiction.

