Universal TMs and the acceptance problem

Peter Mayr

Computability Theory, February 5, 2021

Notation

Just like computing functions can be reduced to a membership question for languages, so can the checking of properties:

Example

Decision problem *P*:

- ▶ **Input:** $w \in \{1\}^*$
- **Question:** Is |w| a square?

Identitfy P with the set of its "yes"-instances,

$$P = \{ w \in \{1\}^* : |w| \text{ is a square} \}.$$

We identify

- decision problem = language
- decidable = computable

Encoding DTMs

To present mathematical objects (tuples, graphs, TMs, ...) as input to TMs we encode them as strings, wlog over $\Sigma = \{0,1\}$.

Definition

Let $M = (Q, \{0,1\}, \Gamma, s, t, r, \delta)$ be a DTM with

- ▶ $n \text{ states } Q = \{1, 11, \dots, 1^n\},$
- ▶ tape alphabet $Γ = \{0, 1, ..., γ_4, ..., γ_m\}$ with letters represented in unary, $[γ_i] := 1^i$,
- ▶ directions +1 and -1 represented by [+1] := 1 and [-1] := 11, resp.

Then our **encoding** [M] of M begins with

followed by the encoding of all transitions $\delta(q, a) = (p, b, d)$ as

Note

The encoding [M] essentially IS (the transition function of) M.

Theorem

The language $\{[M] : M \text{ is a DTM}\}$ is computable.

Proof.

Given $w \in \{0,1\}^*$ a DTM can check whether w is the code of a DTM as defined above.

Encoding pairs

Definition

Let $\Sigma := \{0,1\}$, and $x = x_1 \dots x_k, y = y_1 \dots y_\ell \in \Sigma^*$. Then (x,y) can be encoded as the string of length $2(k+\ell+1)$,

$$[x,y] := \underbrace{x_1x_1}_{} \dots x_k x_k \underbrace{01}_{} y_1 y_1 \dots y_\ell y_\ell$$

Lemma

- 1. The language $\{[x,y]: x,y \in \Sigma^*\}$ is computable.
- 2. There exist computable partial functions $p_1, p_2 \colon \Sigma^* \to_p \Sigma^*$ such that $p_1([x,y]) = x$ and $p_2([x,y]) = y$.

This extends to encoding *n*-tuples via $(a_1, \ldots, a_n) = (\ldots ((a_1, a_2), a_2) \ldots a_n).$

Universal Turing machines

Question

Instead of devising a specific DTM M for every task, is there a single DTM U that can simulate any other?

More precisely:

Definition

A DTM U is **universal** if on input ([M], x) for a DTM M

- U accepts if M accepts x,
- U rejects if M rejects x,
- U loops if M loops on x.

Here [M] is like a program that U runs on x.

Theorem Universal DTMs exist.

Proof.

Sketch universal *U* as multitape TM with $\Sigma = \{0, 1\}, \Gamma = \{0, 1, \bot\}$:

- Tape 1 holds input ([M], x).

 Tape 2 holds the state of M (as $[q_i] = 1^i$).

 Tape 3 simulates the tape of M (encoding $[\gamma_i] = 1^i 0$. ▶ Tape 3 simulates the tape of M (encoding M's tape alphabet
 - ► Tape 4 holds the position of *M*'s head.

On input (c, x):

- 1. *U* checks that *c* is proper TM-code c = [M] (else rejects).
- 2. U writes s, x, 0 on tapes 2,3,4, respectively.
- 3. To simulate a step of M, search for appropriate transition on tape 1 and update tapes 2,3,4 accordingly.
- 4. U accepts/rejects/loops if M accepts/rejects/loops on x.

Acceptance Problem

Definition

The language of a universal TM is the acceptance problem,

$$\mathsf{AP} := \{([M], x) \ : \ M \text{ is a DTM that accepts } x\}.$$

Theorem

AP is computably enumerable.

A non-computably enumerable language

Idea: For L to be non-c.e. we need for every DTM M some $x \in \Sigma^*$ such that

 $x \in L$ iff M does not accept x.

What if we simply choose x := [M] above?

Definition

The self acceptance problem is

$$SAP := \{(M, M) : M \text{ is a DTM that accepts } [M]\}.$$

Theorem

The complement \overline{SAP} is not c.e. (and hence not computable).

Proof.

Seeking a contradiction, suppose M is a DTM with $L(M) = \overline{SAP}$. Consider 2 cases:

- If M accepts [M], then $[M] \in \overline{SAP}$, which means M does not accept [M].

In each case we obtain a contradiction. Hence such an M cannot exist.

Note

This proof technique is called **diagonalization**: For an enumeration of all DTMs $M_1, M_2, \ldots, \overline{\text{SAP}}$ is different

- from $L(M_1)$ at $[M_1]$,
- from $L(M_2)$ at $[M_2]$,

Reductions

Using that SAP is not computable, we can show that AP is neither.

Theorem

AP is not computable.

Proof.

Seeking a contradiction, suppose U is a halting DTM with L(U) = AP.

Then SAP is computable by the following DTM N:

- ➤ On input [M] run U on ([M], [M]).
- ▶ If U accepts ([M], [M]), then N accepts.
- ▶ If U rejects ([M], [M]), then N rejects.

Then L(N) = SAP.

Since U is halting, so is N. Contradiction.