
Church-Turing Thesis

Peter Mayr

Computability Theory, February 3, 2021

What does it mean to compute something?

Algorithm intuitively: description of procedure for some
calculation or task

Entscheidungsproblem (Hilbert, 1928)

Find algorithm that yields for a given statement in first order logic
whether it’s true or not.

(cf. Gödel’s completeness theorem for first order logic)

In 1936 Church and Turing independently show that the
Entscheidungsproblem is not solvable in the formal
computational models they devise:

� λ-calculus by Church,

� Turing machines by Turing.

Afterwards they prove that the class of functions described by
λ-calculus is the same as the those computable by DTMs.

Church-Turing Thesis

Every problem that is solvable by an algorithm (in any intuitive
sense) is solvable by a Turing machine.

Not provable but every known computational model can be
simulated by DTMs, e.g.

� recursive functions

� register machines

� cellular automata

� actual programming languages
...

Examples above are actually Turing complete i.e., can simulate
TMs as well.

Lambda calculus

� Invented by Church.

� Idea: Objects are anonymous unary functions.

� Typed λ-calculus is the basis of functional programming (e.g.
Haskell).

Syntax

λ-terms are defined inductively as

� variables x1, x2, . . .

� abstraction: (λx .t) is a λ-term for t a λ-term and x a
variable

� application: (st) is a λ-term for λ-terms s, t

Example

λ-term interpretation
λx .x
λx .y
λx .x + 1
λx .(λy .x + y)
s := (λx .t)
su = (λx .t)u

Rules to manipulate λ-terms

� α-conversion: Variables bound to an abstraction λ can be
renamed.
λx x . . . x . . . → λy y . . . y . . .

� β-reduction: Apply functions to arguments if all free (not
bound) variables in t remain free.
(λx .s)t → s[x ← t]

� η-conversion: Identify functions that give the same outputs.
λx .(tx) → t if x is not free in t

A working example

Church numerals
We can represent natural numbers in λ-calculus as follows:
0 := λf .(λx .x)
1 := λf .(λx .fx)
2 := λf .(λx .f (fx))
...
n := λf .(λx .f nx)) short: λfx .f nx

Example

plus := λmnfx .(mf)((nf)x)
Claim: (plus m) n →∗ m+n

λ-calculus vs TM

λ-calculus and DTMs have the same computational power in the
following precise sense.

Theorem
A function f : N → N is computable (by a DTM) iff there exists a
λ-term t such that ∀x , y ∈ N :

f (x) = y iff tx ↔β y.

Without proof.

