# Computable and computably enumerable languages

Peter Mayr

Computability Theory, February 1, 2021

#### Definition

- ▶ A DTM M with input alphabet Σ is **halting** if M halts on every  $w ∈ Σ^*$ .
- ▶ If M is halting, it **decides** its language L(M).
- ▶ *L* is **computable** (also decidable, recursive) if there exists a halting DTM M such that L = L(M).
- ▶ L is **computably enumerable (c.e.)** (also semi-decidable, recursively enumerable) if there exists a DTM M such that L = L(M).

#### Note

Even if M is not halting, L(M) may still be computable by a different DTM.

regular 

computable 

c.e.

4 (alex



#### Theorem

L is computable iff L and its complement  $\bar{L}$  is c.e.

## Proof.

 $\Rightarrow$ : Let L = L(M) for a halting DTM M.

- ▶ Then *L* is c.e. by definition.
- Also  $\bar{L} = L(M')$  is c.e. with M' like M but with accept and reject state flipped.

$$\Leftarrow$$
: Let  $M_1=(Q_1,\ldots,\delta_1), M_2=(Q_2,\ldots,\delta_2)$  be DTMs with  $L=L(M_1), \bar{L}=L(M_2).$ 

Construct M to run  $M_1, M_2$  in parallel on input w:

- ightharpoonup states  $Q_1 imes Q_2$
- ▶ tape alphabet  $\Gamma_1 \times \Gamma_2$
- ▶ transition function  $\delta_1 \times \delta_2$
- ▶ accept states  $\{t_1\} \times Q_2$   $(M_1$  accepts)
- ▶ reject states  $Q_1 \times \{t_2\}$  ( $M_2$  accepts)

Then M is halting and L(M) = L.



## Closure properties of computable languages

### **Theorem**

The class of computable languages is closed under complements, union, intersection, concatenation, \*.

## Proof.

Construct the corresponding DTMs.

## Question

Which operations preserve c.e. languages?

# Why "enumerable"?

## Definition

An **enumerator** is a DTM M with  $\sharp \in \Gamma$ ,

- a working tape and
- ▶ an **output tape** on which M moves only right (or stays) and writes only symbols from  $\Gamma \setminus \{\bot\}$ .

The **generated language** Gen(M) of M is the set of all words that M writes on the output tape when starting with empty tapes. Consecutive words are separated by  $\sharp$ .

## Example

If M writes  $\sharp 1 \sharp 11 \sharp 111 \sharp \ldots$ , then  $Gen(M) = L(\epsilon, 1, 11, \ldots)$ .

#### **Theorem**

L is c.e. iff there exists an enumerator with L = Gen(M).

## Proof.

 $\Rightarrow$ : Let L = L(N) for a DTM N.

Idea: Construct an enumerator M that runs through all  $w \in \Sigma^*$  and prints w if N accepts it.

M loops through all pairs  $(m, n) \in \mathbb{N}^2$  (countable!):



- ► For (m, n), M construct the m-th word  $w_m$  over  $\Sigma$  in length-lex order.
- ▶ Then N runs  $\leq n$  steps with input  $w_m$ . If N accepts, then M prints  $w_m$ .

Then Gen(M) = L(N).



#### Proof.

 $\Leftarrow$ : Let L = Gen(M) for an enumerator M.

The following DTM N accepts L:

- $\triangleright$  On input w, N starts M to enumerate L.
- $\triangleright$  If w appears in output of M, N accepts w.
- ► Else, *N* loops.

#### Note

- ▶ Being able to generate a language *L* is equivalent to being able to accept *L* (but not necessarily to reject its non-elements).
- ightharpoonup Generating L is "easier" than deciding L.

# Why "computable"?

For sets  $X \subseteq A$  and B we call  $f: X \to B$  a partial function from A to B with domain(f) = X, denoted  $f: A \to_p B$ .

## Example

 $\sqrt{x}$  can be viewed as partial function  $\mathbb{R} \to_p \mathbb{R}$  with domain  $\mathbb{R}_0^+$ .

## Definition

A partial function  $\underline{f}: \underline{\Sigma^*} \to_p \underline{\Sigma^*}$  is **computable** if there exists a DTM M such that  $\forall x, y \in \underline{\Sigma^*}: (\underline{s, x_{-}, 0}) \vdash_M^* (\underline{t, y_{-}, 0})$  iff  $x \in \text{domain}(f)$  and f(x) = y.

## **Theorem**

 $f: \Sigma^* \to_p \Sigma^*$  is computable iff its graph

$$L_f := \{(x, y) \in (\Sigma^*)^2 : x \in \text{domain}(f), f(x) = y\}$$

is c.e.



## Proof.

⇒: HW

 $\Leftarrow$ : Assume  $L_f = \text{Gen}(N)$  for some enumerator N.

Construct M that computes f(x) as follows:

- ightharpoonup M starts N to enumerate all pairs  $(a,b) \in L_f$ .
- If (x, y) appears for some y, then M returns y = (x)

Note

Computing a function is the same as accepting its graph.