
Computable and computably enumerable
languages

Peter Mayr

Computability Theory, February 1, 2021



Definition
� A DTM M with input alphabet Σ is halting if M halts on

every w ∈ Σ∗.
� If M is halting, it decides its language L(M).

� L is computable (also decidable, recursive) if there exists a
halting DTM M such that L = L(M).

� L is computably enumerable (c.e.) (also semi-decidable,
recursively enumerable) if there exists a DTM M such that
L = L(M).

Note
� Even if M is not halting, L(M) may still be computable by a

different DTM.

� regular ⇒ computable ⇒ c.e.



Theorem
L is computable iff L and its complement L̄ is c.e.

Proof.
⇒: Let L = L(M) for a halting DTM M.

� Then L is c.e. by definition.

� Also L̄ = L(M �) is c.e. with M � like M but with accept and
reject state flipped.

⇐: Let M1 = (Q1, . . . , δ1),M2 = (Q2, . . . , δ2) be DTMs with
L = L(M1), L̄ = L(M2).
Construct M to run M1,M2 in parallel on input w :

� states Q1 × Q2

� tape alphabet Γ1 × Γ2
� transition function δ1 × δ2

� accept states {t1} × Q2 (M1 accepts)

� reject states Q1 × {t2} (M2 accepts)

Then M is halting and L(M) = L.



Closure properties of computable languages

Theorem
The class of computable languages is closed under complements,
union, intersection, concatenation, ∗.

Proof.
Construct the corresponding DTMs.

Question
Which operations preserve c.e. languages?



Why “enumerable”?

Definition
An enumerator is a DTM M with � ∈ Γ,

� a working tape and

� an output tape on which M moves only right (or stays) and
writes only symbols from Γ \ { }.

The generated language Gen(M) of M is the set of all words
that M writes on the output tape when starting with empty tapes.
Consecutive words are separated by �.

Example

If M writes �1�11�111� . . . , then Gen(M) = L(�, 1, 11, . . . ).



Theorem
L is c.e. iff there exists an enumerator with L =Gen(M).

Proof.
⇒: Let L = L(N) for a DTM N.

Idea: Construct an enumerator M that runs through all w ∈ Σ∗

and prints w if N accepts it.

M loops through all pairs (m, n) ∈ N2 (countable!):

� For (m, n), M construct the m-th word wm over Σ in
length-lex order.

� Then N runs ≤ n steps with input wm. If N accepts, then M
prints wm.

Then Gen(M) = L(N).



Proof.
⇐: Let L =Gen(M) for an enumerator M.
The following DTM N accepts L:

� On input w , N starts M to enumerate L.

� If w appears in output of M, N accepts w .

� Else, N loops.

Note
� Being able to generate a language L is equivalent to being able

to accept L (but not necessarily to reject its non-elements).

� Generating L is “easier” than deciding L.



Why “computable”?

For sets X ⊆ A and B we call f : X → B a partial function from
A to B with domain(f ) = X , denoted f : A →p B .

Example√
x can be viewed as partial function R →p R with domain R+

0 .

Definition
A partial function f : Σ∗ →p Σ∗ is computable if there exists a
DTM M such that ∀x , y ∈ Σ∗: (s, x . . . , 0) �∗

M (t, y . . . , 0) iff
x ∈ domain(f ) and f (x) = y .



Theorem
f : Σ∗ →p Σ∗ is computable iff its graph

Lf := {(x , y) ∈ (Σ∗)2 : x ∈ domain(f ), f (x) = y}

is c.e.

Proof.
⇒: HW
⇐: Assume Lf =Gen(N) for some enumerator N.
Construct M that computes f (x) as follows:

� M starts N to enumerate all pairs (a, b) ∈ Lf .

� If (x , y) appears for some y , then M returns y .

� Else M loops.

Note
Computing a function is the same as accepting its graph.


