Non-deterministic Turing machines

Peter Mayr

Computability Theory, January 29, 2021

Generalizations of the DTM

The concept of a Turing machine can be generalized by

- 1. a tape that is infinite in both directions,
- 2. a finite number of tapes,
- 3. non-determinism

Notions of configurations, acceptance, language ... generalize in a straightforward way.

All these generalizations have the same expressive power, i.e., accept the same languages as the DTM defined previously. (HW)

Definition

A non-deterministic Turing machine (NTM) is a 7-tuple $N = (Q, \Sigma, \Gamma, s, t, r, \Delta)$ like a DTM except for

$$\Delta: Q \setminus \{t,r\} \times \Gamma \rightarrow P(Q \times \Gamma \times \{-1,+1\}).$$

- ▶ (q', α', k') is a successor configuration of (q, α, k) in $Q \setminus \{t, r\} \times \Gamma^{\mathbb{N}} \times \mathbb{N}$ if there is $(q', a, d) \in \Delta(q, \alpha(k))$ such that $\alpha' = \alpha[k \to a]$ and $k' = \max(k + d, 0)$. Then write $(q, \alpha, k) \vdash_N (q', \alpha', k')$. Let \vdash_N^* denote the transitive closure of \vdash_N .
- ▶ *N* accepts $w \in \Sigma^*$ if $(s, w_{-}, ..., 0) \vdash_N^* (t, ..., ...)$ for some (t, ..., ...).
- ▶ *N* halts on *w* if there exists $K \in \mathbb{N}$ such that for each configuration *c* and $k \in \mathbb{N}$: $(s, w_{-}..., 0) \vdash_{N}^{k} c$ implies $k \leq K$.
- ▶ $L(N) := \{w \in \Sigma^* : N \text{ accepts } w\}$ is the **language** of M. N

Theorem

For every NTM N there exists a DTM M such that

- 1. L(N) = L(M);
- 2. if N halts on all inputs, then M halts on all inputs.

Proof.

Let $N = (Q, \Sigma, \Gamma, s, t, r, \Delta)$ be a NTM. The computation of N on input w can be viewed as tree with vertices labelled by configurations where every vertex has at most

 $\max\{|\Delta(\underline{q},\underline{a})|\ :\ q\in Q\setminus\{t,r\}, a\in\Gamma\}$

successors.

(S, w. ..., 0)

 $w \in L(N)$ iff \exists finite path from root $(s, w_{\perp}, 0)$ to some leaf (t, ., .).

Idea: Construct DTM M that tries all branches of N's computation tree breadth first by determining all configurations C_k that can be reached from the starting configuration in k steps.

High-level description of M:

- ▶ Let $C_0 := \{(s, w_{-}..., 0)\}$ and $\underline{k} := 0$.
- Iterate the following:
 - ▶ If $\exists (t,.,.) \in C_k$, accept.
 - $\blacktriangleright \text{ If } \widetilde{C_k} = \emptyset, \text{ reject.}$
 - ▶ Let $C_{k+1} := \bigcup_{c \in C_k} \{c' : c \vdash c'\}$ and k := k+1.

Analysis of M:

- ▶ If N accepts w in k steps, then C_k contains an accepting configuration and M will accept (converse is clear).
- ▶ If N halts on \underline{w} in $\leq K$ steps, then either M accepts before reaching C_{K+1} or rejects with $C_{K+1} = \emptyset$.

Note

If a configuration of the NTM has $\leq r$ successors, then the simulating DTM may consider $|C_k| \leq r^k$ configurations. It is open whether an exponential increase in the runtime of the DTM can be avoided (see P vs NP).