Turing machines

Peter Mayr

Computability Theory, January 27, 2021

(ロ)、(型)、(E)、(E)、 E) のQ(()

Turing machines (TM) were proposed by Turing (1937) as computational model to formalize the intuitive notion of algorithms.

A TM consists of

- tape: consists of cells that can contain a symbol, has a leftmost end but is infinite to the right, initial part holds input, else filled with blanks _
- **control:** in one of finitely many states, contains instructions
- head: points to a cell on tape

In one step a TM

- changes state according to its current state and the symbol at the location of the head,
- writes a new symbol at the location of the head,
- moves the head one position left or right.

TM runs until it reaches its **accept** or **reject** state (may never stop).

DTM specification

Definition

A deterministic Turing machine (DTM) *M* is a 7-tuple

- $(Q, \Sigma, \Gamma, s, t, r, \delta)$ with
 - Q a finite set of states,
 - Σ a finite input alphabet,
 - ► Γ a finite tape alphabet with $_ \in \Gamma, \Sigma \subseteq \Gamma \setminus \{_\}$,
 - $s \in Q$ the start state,
 - $t \in Q$ the accept state,
 - $r \in Q$ the **reject state** with $r \neq t$,
 - ► $\delta: (\underline{Q} \setminus \{t, r\}) \times \underline{\Gamma} \to \underline{Q} \times \underline{\Gamma} \times \{-1, +1\}$ the transition function.

Example DTM with $Q = \{s, t, r\}, \Sigma = \{0, 1\}, \Gamma = \Sigma \cup \{ _\}$ and $\frac{\delta \mid 0 \qquad 1 \qquad _}{s \mid (s, 0, +1) \quad (s, 0, +1)}$

Differences DTM and DFA

- DFA can be interpreted as DTM but
- DTM has infinite tape to read and write (memory!)
- DTM computation not bound by input length (DTM may not halt at all)

Example

DTM to accept $L = \{0^n 1^n : n \in \mathbb{N}\}.$

Idea: Alternatingly delete 0,1 from ends of the input string. Accept if only blanks remain.

$$\frac{\delta}{duld} \frac{0}{s} \frac{0}{(p_0, \dots, +1)} \frac{1}{(r, \dots, +1)}$$

Stele transitions

computation on input 0011		
slale	dape	position
s	00114	0
Po	1011 L	t i
Po	aotiu	2
eJ.	40114	3
م	u 011 🛓	4
۱ فر	HOLLM	3
۲	ᇇᇬᇧ	2
Pr	uÖlulu	-1
Pi	1014	0
S	4014	t i
	i.	

A D > A D > A D > A D >

Describing the computation of a DTM

Definition

Let $M = (Q, \Sigma, \Gamma, s, t, r, \delta)$ be a DTM.

- Enumerate the cells on the tape of M by $\mathbb{N} = \{0, 1, 2, \dots\}$.
- A configuration of *M* is a triple (q, α, k) ∈ Q × Γ^N × N of state q, tape content α and head in position k of the tape.
- The successor configuration of (q, α, k) for q ∈ Q \ {t, r} and δ(q, α(k)) = (p, a, d) is

$$(p, \alpha[k \rightarrow a], \max(k + d, 0)).$$

(The function $\alpha[k \rightarrow a]$ is equal to α except it maps k to a.)

Write c ⊢_M d if d is the successor configuration of c. Let ⊢_M^{*} denote the transitive closure of ⊢_M on Q × Γ^N × N. Then c ⊢_M^{*} d ("c yields d") if d is obtained from c in finitely many steps of M.

Definition

- M accepts w ∈ Σ* if (s, w ..., 0) ⊢^{*}_M (t,.,.). M rejects w if (s, w ..., 0) ⊢^{*}_M (r,.,.). M halts on w if it either accepts or rejects w; else M loops on w.
- ▶ The **language** of *M* is

$$L(M) := \{ w \in \Sigma^* : M \text{ accepts } w \}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00