Properties of regular languages

Peter Mayr

Computability Theory, January 25, 2021

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Closure properties of regular languages

Recall

 $L \subseteq \Sigma^*$ is **regular** if *L* is defined by a regular expression (equivalently, accepted by a DFA).

Theorem

The class of regular languages over Σ is closed under complement in Σ^* , union, intersection, concatenation, and Kleene star *.

Proof.

Closure under union, concatenation, * is given by the definition. The rest follows by constructing appropriate DFAs (HW).

A necessary condition for regularity

Question

Is every language L over Σ regular? How to show it is not?

continuum many languages are Z#6 (5-165065 of Z*) only countedby many vegetar laquestons

Pumping Lemma For any regular language *L* there exists $n \in \mathbb{N}$ (pumping length of *L*) such that $\forall w \in L, |w| \ge n, \exists x, y, z \in \Sigma^*$ such that

Example

 $\{\underline{0^k1^k}: k \in \mathbb{N}\}$ is not regular since it does not have any pumping length.

Proof. Let L = L(M) for a DFA M with n states. Let $w = a_1 \dots a_m \in L$ with $a_i \in \Sigma$ and $m \ge n$. Define

$$p_i := \delta^*(s, a_1 \dots a_i)$$
 for $i \leq m$.

By the pigeonhole principle $\exists 0 \leq i < j \leq n$: $p_i = p_j$. Consider the path labelled by w:

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つへつ

Then $\delta^*(p_i, y) = p_i$ and $xy^k z \in L$ for all $k \in \mathbb{N}$.

Myhill-Nerode Theory

For $L \subseteq \Sigma^*$ define an equivalence relation R_L on Σ^* by

$$x R_L y$$
 if $\forall w \in \Sigma^* : (xw, yw \in L)$ or $(xw, yw \in \Sigma^* \setminus L)$.

Idea: If *L* is regular and *x*, *y* are not related, then they correspond to different states $\delta^*(s, x) \neq \delta^*(s, y)$. Note: The action of the semigroup Σ^* on Σ/R_L is welldefined.

Theorem (Myhill, Nerode 1958) *L* is regular iff $\Sigma^*/\underline{R_L}$ is finite.

Example

 $L = \{0^k 1^k : k \in \mathbb{N}\}$ is not regular since $\underline{0^k}$ for $k \in \mathbb{N}$ are in pairwise distinct R_L -classes.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Proof.

⇒: Let L = L(M) for a DFA M with states $\{1, ..., n\}$ and start state 1.

For $i \leq n$, define

$$S_i := \{ w \in \Sigma^* : \delta^*(1, w) = i \}.$$

Then S_1, \ldots, S_n refine Σ^* / \mathbb{R}_L and $|\Sigma^* / \mathbb{R}_L| \le n$. \Leftarrow : Define a DFA M_L with

•
$$\Sigma^*/R_L = \{S_1, ..., S_n\} =: Q \text{ (states)}$$

•
$$\delta(w/R_L, a) := wa/R_L$$
 (transition function, welldefined!)

•
$$s := \epsilon/R_L$$
 (start state)

•
$$F := \{w/R_L : w \in L\}$$
 (final states)

Then $L(M_L) = L$.

Corollary

 M_L above is the unique minimal DFA that accepts L.

Summary on automata and regular languages

- Converting NFA to DFA increases the number of states exponentially (in the worst case).
- Converting DFA to regular expressions (or conversely) is exponential in the number of states (the length of the expression).
- ▶ Membership in L(M): Easy, check w ∈ L(M) by running M with input w (takes |w| steps).
- Emptiness of L(M): Easy, check whether some final state is reachable from the start state (cf. graph reachability, takes n² steps).