Regular languages

Peter Mayr

Computability Theory, January 22, 2021

Regular expressions

Definition

The set of **regular expresssions** over Σ is defined inductively by

- ▶ \emptyset , ϵ are regular;
- ▶ a is regular for every $a \in \Sigma$;
- ▶ if r_1, r_2 are regular, then also r_1r_2 and $r_1 + r_2$;
- ightharpoonup if r is regular, then also r^* .

Example

```
(a+(b(c^*))) is regular over \Sigma=\{a,b,c\}, usually denoted a+bc^*.
```

Note

- Regular expressions are just strings of symbols.
- Parenthesis are used when necessary for parsing.
- **Convention:** * binds stronger than ⋅, ⋅ stronger than +.

Semantics

Definition

The language $L(r) \subseteq \Sigma^*$ of a regular expression r is defined inductively by

- $ightharpoonup L(\emptyset) := \emptyset, \ L(\epsilon) := \{\epsilon\}$
- ▶ $L(a) := \{a\}$ for $a \in \Sigma$
- ▶ $L(r_1r_2) := \{w_1w_2 : w_1 \in L(r_1), w_2 \in L(r_2)\}$ concatenation $L(r_1 + r_2) := L(r_1) \cup L(r_2)$ union
- $L(r^*) := L(r)^* := \underbrace{L(r)^0 \cup L(r)^1 \cup L(r)^2 \cup \dots}_{r}$ Kleene star

Example

- $L(a+bc^*)=\{a\}\cup\{bc^n : n\in\mathbb{N}\}$
- regular expression for words ending in 01: $(0+1)^*01$
- regular expression for words in which 0 and 1 alternate: $(1+\epsilon)(01)^*(0+\epsilon)$

Regular languages and automata

Definition

 $L \subseteq \Sigma^*$ is **regular** if L = L(r) for some regular expression r over Σ .

Theorem

 $L \subseteq \Sigma^*$ is regular iff L = L(M) for some DFA M with input alphabet Σ .

Proof

 \Rightarrow : Given a regular expression r, it suffices to build an ϵ -NFA M with L(M) = L(r) by induction on r:

$$ightharpoonup r = \emptyset$$

$$r = \epsilon$$

▶ r = a for $a \in \Sigma$

Proof ⇒: Closure under concatenation

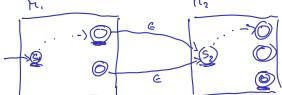
Let $\underline{r} = r_1 r_2$. Assume ϵ -NFAs M_1 , M_2 accept $L(r_1)$, $L(r_2)$, resp.

Compose M_1 and M_2 into a new ϵ -NFA M for r with

- ▶ states $Q_1 \cup Q_2$ (wlog Q_1, Q_2 are disjoint)
- \blacktriangleright the starting state s_1 of M_1
- \blacktriangleright the accepting states F_2 of M_2
- ▶ $\Delta = \Delta_1 \cup \Delta_2 \cup \{\epsilon \text{-transitions from } F_1 \text{ to } s_2\}.$

Then $L(M) = L(r_1r_2)$.

Note: The only path from s_1 to F_2 is via an ϵ -transition from F_1 to s_2 .



Proof ⇒: Closure under union

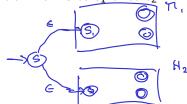
Let $\underline{r} = r_1 + r_2$. Assume ϵ -NFAs M_1, M_2 accept $L(r_1), L(r_2)$, resp.

Compose M_1 and M_2 in parallel into a new ϵ -NFA M with

- ▶ states $\{s\} \cup Q_1 \cup Q_2$ (disjoint union)
- ▶ a new starting state s
- ightharpoonup accepting states $F_1 \cup F_2$
- ▶ $\Delta = \Delta_1 \cup \Delta_2 \cup \{\epsilon$ -transitions from s to s_1 and to s_2 }.

Then $L(M) = L(r_1 + r_2)$.

Note: The only path from s to either F_1 or F_2 is via an ϵ -transition from s to s_1 or to s_2 .



Proof ⇒: Closure under *

Let $r = r_1^*$. Assume ϵ -NFA M_1 accepts $L(r_1)$.

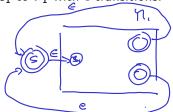
Loop M_1 to get a new ϵ -NFA M with

- ▶ states $\{s\} \cup Q_1$ (disjoint union)
- a new starting state s
- ▶ new accepting states {s}

▶ $\Delta = \Delta_1 \cup \{\epsilon$ -transitions from s to s_1 and from F_1 to s_2 }.

Then $L(M) = L(r_1^*)$.

Note: The only path from s to s is via ϵ or via concatenations of paths from s_1 to F_1 with ϵ -transitions.



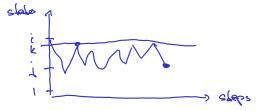
This completes the proof that every regular language is accepted by some ϵ -NFA (hence a DFA).

```
\mathsf{Proof} \Leftarrow
```

Given a DFA M find a regular expression r such that L(M) = L(r).

Assume M has states $\{1,\ldots,n\}$. For $i,j,k\leq n$ define

$$\underline{R_{ij}^k} := \left\{ w \in \Sigma^* : \begin{array}{l} \delta^*(\underline{i}, w) = \underline{j} \text{ and all intermediate states} \\ \text{on the path labelled by } w \text{ are } \leq k \end{array} \right.$$



Claim (*): $R_{ij}^k = L(r_{ij}^k)$ for some regular r_{ij}^k .

Proof by induction on k:

Basis k = 0: No intermediate states on the path from i to j. Let

$$A := \{ a \in \Sigma : \delta(i, a) = j \}$$

▶ For $i \neq j$, let

$$r_{ij}^0 := egin{cases} \emptyset & ext{if } A = \emptyset \ a_1 + \cdots + a_\ell & ext{if } A = \{a_1, \ldots, a_\ell\}, \ell \geq 1 \end{cases}$$

ightharpoonup For i = j, let

$$r_{ij}^0 := egin{cases} \epsilon & ext{if } A = \emptyset \ \epsilon + a_1 + \dots + a_\ell & ext{if } A = \{a_1, \dots, a_\ell\}, \ell \geq 1 \end{cases}$$

Induction step: Let $w \in R_{ii}^k, k \ge 1$.

- ▶ If k is not an intermediate point on the path described by w, then $w \in R_{ii}^{k-1}$.
- ▶ If w's path goes to k at least once, then

$$w \in R_{ik}^{k-1}(R_{kk}^{k-1})^* R_{kj}^{k-1}$$

Hence $R_{ij}^k = R_{ij}^{k-1} \cup R_{ik}^{k-1} (R_{kk}^{k-1})^* R_{kj}^{k-1}$.

By induction assumption, R_{ij}^k is the language of the regular expression

$$r_{ij}^{k-1} + r_{ik}^{k-1} (r_{kk}^{k-1})^* r_{kj}^{k-1}$$

and Claim (\star) is proved.

Let 1 the start state and F the final states of M. For k=n, Claim (\star) yields regular $r:=\sum_{f\in F}r_{1f}^n$ such that L(M)=L(r).