
Regular languages

Peter Mayr

Computability Theory, January 22, 2021



Regular expressions

Definition
The set of regular expresssions over Σ is defined inductively by

� ∅, � are regular;

� a is regular for every a ∈ Σ;

� if r1, r2 are regular, then also r1r2 and r1 + r2;

� if r is regular, then also r∗.

Example

(a+(b(c∗))) is regular over Σ = {a, b, c}, usually denoted a+ bc∗.

Note
� Regular expressions are just strings of symbols.

� Parenthesis are used when necessary for parsing.

� Convention: ∗ binds stronger than ·, · stronger than +.



Semantics

Definition
The language L(r) ⊆ Σ∗ of a regular expression r is defined
inductively by

� L(∅) := ∅, L(�) := {�}
� L(a) := {a} for a ∈ Σ

� L(r1r2) := {w1w2 : w1 ∈ L(r1),w2 ∈ L(r2)} concatenation
L(r1 + r2) := L(r1) ∪ L(r2) union

� L(r∗) := L(r)∗ := L(r)0 ∪ L(r)1 ∪ L(r)2 ∪ . . . Kleene star

Example

� L(a + bc∗) = {a} ∪ {bcn : n ∈ N}
� regular expression for words ending in 01: (0 + 1)∗01
� regular expression for words in which 0 and 1 alternate:

(1 + �)(01)∗(0 + �)



Regular languages and automata

Definition
L ⊆ Σ∗ is regular if L = L(r) for some regular expression r over Σ.

Theorem
L ⊆ Σ∗ is regular iff L = L(M) for some DFA M with input
alphabet Σ.

Proof
⇒: Given a regular expression r , it suffices to build an �-NFA M
with L(M) = L(r) by induction on r :

� r = ∅ r = �

� r = a for a ∈ Σ



Proof ⇒: Closure under concatenation
Let r = r1r2. Assume �-NFAs M1,M2 accept L(r1), L(r2), resp.
Compose M1 and M2 into a new �-NFA M for r with

� states Q1 ∪ Q2 (wlog Q1,Q2 are disjoint)

� the starting state s1 of M1

� the accepting states F2 of M2

� Δ = Δ1 ∪Δ2 ∪ {�-transitions from F1 to s2}.
Then L(M) = L(r1r2).
Note: The only path from s1 to F2 is via an �-transition from F1
to s2.



Proof ⇒: Closure under union
Let r = r1 + r2. Assume �-NFAs M1,M2 accept L(r1), L(r2), resp.
Compose M1 and M2 in parallel into a new �-NFA M with

� states {s} ∪ Q1 ∪ Q2 (disjoint union)

� a new starting state s

� accepting states F1 ∪ F2
� Δ = Δ1 ∪Δ2 ∪ {�-transitions from s to s1 and to s2}.

Then L(M) = L(r1 + r2).
Note: The only path from s to either F1 or F2 is via an
�-transition from s to s1 or to s2.



Proof ⇒: Closure under ∗

Let r = r∗1 . Assume �-NFA M1 accepts L(r1).
Loop M1 to get a new �-NFA M with

� states {s} ∪ Q1 (disjoint union)

� a new starting state s

� new accepting states {s}
� Δ = Δ1 ∪ {�-transitions from s to s1 and from F1 to s2}.

Then L(M) = L(r∗1 ).
Note: The only path from s to s is via � or via concatenations of
paths from s1 to F1 with �-transitions.

This completes the proof that every regular language is accepted
by some �-NFA (hence a DFA).



Proof ⇐
Given a DFA M find a regular expression r such that L(M) = L(r).
Assume M has states {1, . . . , n}. For i , j , k ≤ n define

Rk
ij :=

�
w ∈ Σ∗ :

δ∗(i ,w) = j and all intermediate states
on the path labelled by w are ≤ k

�



Claim (�): Rk
ij = L(rkij ) for some regular rkij .

Proof by induction on k :
Basis k = 0: No intermediate states on the path from i to j . Let

A := {a ∈ Σ : δ(i , a) = j}

� For i �= j , let

r0ij :=

�
∅ if A = ∅
a1 + · · ·+ a� if A = {a1, . . . , a�}, � ≥ 1

� For i = j , let

r0ij :=

�
� if A = ∅
�+ a1 + · · ·+ a� if A = {a1, . . . , a�}, � ≥ 1



Induction step: Let w ∈ Rk
ij , k ≥ 1.

� If k is not an intermediate point on the path described by w ,
then w ∈ Rk−1

ij .

� If w ’s path goes to k at least once, then

w ∈ Rk−1
ik (Rk−1

kk )∗Rk−1
kj

Hence Rk
ij = Rk−1

ij ∪ Rk−1
ik (Rk−1

kk )∗Rk−1
kj .

By induction assumption, Rk
ij is the language of the regular

expression
rk−1
ij + rk−1

ik (rk−1
kk )∗rk−1

kj

and Claim (�) is proved.

Let 1 the start state and F the final states of M.
For k = n, Claim (�) yields regular r :=

�
f ∈F rn1f such that

L(M) = L(r).


