Deterministic and nondeterministic automata

Peter Mayr

Computability Theory, January 20, 2021

・ロト・日本・ヨト・ヨト・日・ シック

Recall

Definition

A deterministic finite automaton (DFA) is a 5-tuple $M = (Q, \Sigma, \delta, s, F)$ with

- Q a finite set (states),
- Σ a finite set (input alphabet),
- $\delta: Q \times \Sigma \rightarrow Q$ the transition function,
- $s \in Q$ the start state,
- $F \subseteq Q$ the set of final/accepting states.

M accepts $w \in \Sigma^*$ if $\delta^*(s, w) \in F$ for the extension δ^* of δ to Σ^* .

$$L(M) := \{w \in \Sigma^* : M \text{ accepts } w\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

is the language of M.

Example

Is there a DFA M_3 such that $L(M_3) = \{w \in \{0,1\}^* : 001 \text{ is a substring of } w\}?$ |dea: Scan w for 00| $Slales: slack s \dots no performed of <math>00|$ seen yel $q_0 \dots just seen 00$ $q_{001} \dots q_{001} \dots q_{001}$

(日)

Nondeterministic finite automata

- Deterministic: current state and input symbol uniquely determine next state
- **Nondeterministic:** several choices for next state
 - Interpretation: all possible transitions are done in parallel/the 'right' one is guessed.
 - Not a realistic model of computation but a useful theoretical device for its analysis.

Definition

A nondeterministic finite automaton with ϵ -transitions (ϵ -NFA) is a 5-tuple (Q, Σ, Δ, s, F) like a DFA except that

 $\Delta \colon Q \times \Sigma \cup \{\epsilon\} \to P(Q) \qquad (P(Q) \dots \text{ power set of } Q)$

- Recall ϵ is the empty word, not an element in Σ .
- ϵ -transitions allow the NFA to change from a state q to any state in $\Delta(q, \epsilon)$ without input.
- Wlog, the sets T := Δ(q, a) for any a ∈ Σ ∪ {ε} are ε-closed (i.e. if t ∈ T, then also Δ(t, ε) ⊆ T).

イロト イヨト イヨト イヨト ヨー のくで

Definition

For an ϵ -NFA $N = (Q, \Sigma, \Delta, s, F)$ the extended transition function

$$\Delta^* \colon Q imes \Sigma^* o P(Q)$$

is defined inductively for $q \in Q, w \in \Sigma^*, a \in \Sigma$ by

$$egin{array}{lll} \Delta^*(q,\epsilon) & := \Delta(q,\epsilon) \ \Delta^*(q,\mathit{wa}) & := igcup_{r\in\Delta^*(q,w)}\Delta(r,\mathit{a}) \end{array}$$

assuming all $\Delta(q, \epsilon)$ and $\Delta(r, a)$ are ϵ -closed.

- N accepts w if Δ*(s, w) ∩ F ≠ Ø (i.e. N accepts w iff ∃ some path from s to a state in F that is labelled by w).
- N rejects w otherwise.

The language of N is

$$L(N) := \{ w \in \Sigma^* : M \text{ accepts } w \}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Note

Every DFA can be considered as ε-NFA with Δ(q, a) := {δ(q, a)} (singleton) and Δ(q, ε) := Ø.

Every language accepted by a DFA is also accepted by some *e*-NFA. What about the converse?

Theorem (Subset construction (Rabin, Scott 1959)) Let $N = (Q, \Sigma, \Delta, s, F)$ be an ϵ -NFA with all $\Delta(q, a)$ ϵ -closed. Let $M = (Q', \Sigma, \delta, s', F')$ be the DFA with $\triangleright Q' := P(Q),$ $\triangleright \delta(R, a) := \bigcup_{q \in R} \Delta(q, a)$ for $R \subseteq Q, a \in \Sigma,$ $\flat s' := \Delta(s, \epsilon),$ $\triangleright F' := \{R \in P(Q) : R \cap F \neq \emptyset\}.$ Then L(N) = L(M).

Proof

First show for all $w \in \Sigma^*$ that

$$\delta^*(s',w) = \Delta^*(s,w) \tag{(\dagger)}$$

by induction on
$$|w|$$
.
Base case: For $w = \epsilon$,
 $\delta^*(s', \epsilon) \stackrel{\star}{=} s' \stackrel{\iota}{=} \Delta(s, \epsilon) \stackrel{\iota}{=} \Delta^*(s, \epsilon)$.
Induction hypothesis: (†) holds for $w \in \Sigma^*$ of length *n*.

Let $a \in \Sigma$. Then

$$\begin{split} \delta^*(s', wa) &= \delta\big(\,\delta^*(s', w), a\big) \\ &= \delta\big(\,\Delta^*(s, w), a\big) \\ &= \bigcup_{q \in \Delta^*(s, w)} \Delta(q, a) \\ &= \Delta^*(s, wa) \end{split}$$

by definition of δ^* by induction hypothesis by definition of δ by definition of Δ^*

Hence (†) is proved.

Proof, continued

Note: *N* accepts *w* iff $\Delta^*(s, w) \cap F \neq \emptyset$ iff $\delta^*(s', w) \in F'$ by (†) and the definition of *F'* iff *M* accepts *w*.

Note

The subset construction translates an NFA with |Q| states into a DFA with $2^{|Q|}$ states. Often fewer suffice.

Example, continued

Recall the ϵ -NFA N with 3 states, $L(N) = \{0^{\ell}1^m2^n : \ell, m, n \in \mathbb{N}\}$. There is a DFA M with L(M) = L(N) and

Since the other subsets cannot be reached from the starting state $\{a, b, c\}$, they can be omitted.