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Peter Mayr

Computability Theory, January 20, 2021



Recall

Definition
A deterministic finite automaton (DFA) is a 5-tuple
M= (Q,X%,d,s, F) with
> Q a finite set (states),
> ¥ a finite set (input alphabet),
> §: Q@ x X — @ the transition function,
> s c Q the start state,
» F C Q the set of final/accepting states.
M accepts w € X* if §*(s, w) € F for the extension 0* of § to X*.

L(M):={weX® : M accepts w}

is the language of M.



Example

Is there a DFA M3 such that
L(M3) ={w € {0,1}* : 001 is a substring of w}?

l[dea: Cean v [or 0O
ggﬂl%‘. QLQ.LL c ... mJ?QvLo‘(w( S« 72'(

Gy .- iwsisaw ©

Goo .- \'\f--sL saw OO
Qo .
¢ .-

C llg()(d E_cal b-“(:vmdn-(atph
0 Al

Q. 6 9
__@Z—T@._;__L>@



Nondeterministic finite automata
» Deterministic: current state and input symbol uniquely

determine next state
» Nondeterministic: several choices for next state
» Interpretation: all possible transitions are done in parallel /the

‘right' one is guessed.
» Not a realistic model of computation but a useful theoretical

device for its analysis.
Definition
A nondeterministic finite automaton with c-transitions
(e-NFA) is a 5-tuple (Q, X, A,s, F) like a DFA except that

A: Q@xXU{el = P(Q) (P(Q)...power set of Q)

P> Recall € is the empty word, not an element in .

P c-transitions allow the NFA to change from a state g to any
state in A(q, €) without input.

» Wilog, the sets T := A(q, a) for any a € ¥ U {¢} are e-closed
(i.e. if t € T, then also A(t,e) C T).
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Definition
For an eNFA N = (Q, X, A, s, F) the extended transition
function

A" QXX = P(Q)

is defined inductively for g € Q,w € ¥*, a € ¥ by

A*(g,e) = A(qg,¢€)
A*(qv Wa) = UreA*(q,w) A(r’ a)

assuming all A(q,¢€) and A(r, a) are e-closed.

> N accepts w if A*(s,w)NF #0
(i.e. N accepts w iff 3 some path from s to a state in F that
is labelled by w).

> N rejects w otherwise.

The language of N is

L(N) :={w e X" : M accepts w}.



Note
» Every DFA can be considered as e-NFA with
A(q,a) :={d(q,a)} (singleton) and A(q,¢€) :=0.
» Every language accepted by a DFA is also accepted by some
e-NFA. What about the converse?

Theorem (Subset construction (Rabin, Scott 1959))

Let N=(Q,X,A,s, F) be an e-NFA with all A(q, a) e-closed. Let
M= (Q,¥%,d,5s, F') be the DFA with

> Q= P(Q),
> §(R,a) == Uger Alg,a) for RC Q,a€ X,
> s = A(s,e),

» FF.={ReP(Q) : RNF #0}.
Then L(N) = L(M).



Proof
First show for all w € * that

0"(s", w) = A*(s, w) (1)

by induction on |w].
Base case: For w = ¢,

Di 5" &-closd
5*(s'se) £ 5 = A(s, €) £ A*(s,e).
Def <

Induction hypothesis: (1) holds for w € ¥* of length n.
Let a€ X. Then

5*(s',wa) =0(6*(s',w),a) by definition of ¢*
= 6( A*(s,w), a) by induction hypothesis
= Ugear(sw) 2(q,a) by definition of &
= A*(s, wa) by definition of A*

Hence (t) is proved.



Proof, continued

Note: N accepts w iff A*(s,w)NF # 0
iff 0*(s’, w) € F’ by (}) and the definition of F’
iff M accepts w. O

Note
The subset construction translates an NFA with |Q| states into a
DFA with 2/l states. Often fewer suffice.

Example, continued
Recall the e-NFA N with 3 states, L(N) = {0°1™2" : ¢, m,n € N},
There is a DFA M with L(M) = L(N) and

0 0
{a,b,c} | {a,b,c} {b,c} {c}
{b,c} 0 {b,c} {c}
{c} 0 0 A{c}
0 0

1 2

0 0

Since the other subsets cannot be reached from the starting state
{a.b.ct they can be omitted.



