Math 6010 - Assignment 5

(5) Show that Σ_n^0 for $n \in \mathbb{N}$ is closed under bounded quantifiers.

Proof. Let P(x,t) be Σ_n^0 . We have to show that

$$E(x,z) \equiv \exists t < z \ P(x,t)$$

$$U(x,z) \equiv \forall t < z \ P(x,t)$$

are Σ_n^0 . Note that the bound z is an argument of E, U, respectively. Hence neither E, U cannot be reduced to a fixed number of disjunctions, conjunctions (that is, to exercise 4).

Instead we use induction on n:

Base case: Assume P(x,t) is Σ_0^0 , that is, its characteristic function c_P is computable.

Then the characteristic function of U is

$$c_U(x,z) := \prod_{t=0}^{z-1} c_P(x,t),$$

hence also computable. Thus U is Σ_0^0 . Similarly the characteristic function

$$c_E(x,z) := 1 - \prod_{t=0}^{z-1} (1 - c_P(x,t))$$

of E is computable. Hence E is Σ_0^0 .

Induction step: Let $n \ge 1$ and $P(x,t) \equiv \exists y \ R(x,y,t)$ for some R in Π_{n-1}^0 .

Clearly E is Σ_n^0 since Σ_n^0 is closed under arbitrary existential quantifiers as proved in class.

For U we claim that

(1)
$$\forall t < z \,\exists y \, R(x, y, t) \equiv \exists y \,\forall t < z \, R(x, (y)_t, t).$$

Assume U(x,z) (i.e. the left hand side of (1)) holds. For t < z let y_t be a witness such that $R(x,y_t,t)$. Define $y := \prod_{t=0}^{z-1} p_t^{y_t}$. Then $\forall t < z \ R(x,(y)_t,t)$. Hence the right hand side of (1) holds.

The converse implication in (1) is clear. Hence (1) is proved. Since Π_{n-1}^0 is closed under universal quantifiers and substitution with total computable functions, $\forall t < z \ R(x,(y)_t,t)$ is Π_{n-1}^0 . Thus (1) yields that U(x,z) is Σ_n^0 .