Completeness

Peter Mayr

Computability Theory, December 13, 2023

Reductions

Definition

A many-one reduction f from A to B is **first order** (f.o.) if the graph of f is first order definable.

Since FO \subsetneq L \subseteq P, first order reductions are weaker than logspace reductions which are weaker than polytime reductions.

Complete Problems in L and NL

- in L (via f.o. reductions):
 Cycle: Given an undirected graph, does it contain any cycle?
- ▶ in NL (via f.o. reductions):

2SAT

Reachability: Given a directed graph and vertices s, t, is there a path from s to t?

Proof idea

- ► Let *C* be a class of structures that is decided by a nondeterministic TM N in logspace.
- Show that for any **A** the configuration graph $G(\mathbf{A})$ of N on input **A** is f.o.-definable.
- ▶ Then $\mathbf{A} \in C$ iff in $G(\mathbf{A})$ there is a path from start to accept configuration.

Complete in P

- via f.o. reductions:
 Circuit-Value-Problem: Given a Boolean circuit with specified input, is the output 1?
- ▶ via NC reductions: Given a DTM M and n in unary, does M halt on an empty tape in $\leq n$ steps?
 - NC := problems for which there exist c, k such that they are decidable in time $O((\log n)^c)$ using $O(n^k)$ parallel processors (Nick's class/problems that can be efficiently parallelized)
 - Typical problems in NC: matrix multiplication, determinant, polynomial gcd
 - ightharpoonup NL \subseteq NC \subseteq P
- via logspace reductions:
 Linear Programming: Maximize a linear function subject to linear inequality constraints.

Complete in NP

SAT via f.o. reductions.

Complete in PSPACE (under f.o. reductions)

QBF: Given a quantified Boolean formula,

$$\exists x_1 \ \forall x_2 \ \dots \ Qx_n : \ \alpha(x_1,\dots,x_n)$$

is it satisfiable?

Proof idea for PSPACE-hardness with polytime reductions

- Let *L* be a language that is decided by a TM M in space s(n), let $x \in \{0,1\}^n$.
- ▶ Construct a QBF ψ of size $O(s(n)^2)$ that is true iff $x \in L$.
- For configurations $d, e \in 2^{cs(n)}$ of M, define $\psi_0(d, e) := d = e$ or e is a successor of d; $\psi_i(d, e) := \exists f \ \psi_{i-1}(d, f) \land \psi_{i-1}(f, e)$ for i > 0.
- Then $x \in L$ iff $\psi_{cs(n)}(\text{start,accept})$ holds. But $\psi_{cs(n)}$ has length exponential in s(n).
- ► To get polynomial length, note $\psi_i(d,e) \equiv \exists f \forall v \forall w \ [(v = d \land w = f) \lor (v = f \land w = e)] \Rightarrow \psi_{i-1}(v,w)$

Complete in EXPTIME

Given a DTM M and n in binary, does M halt on an empty tape in $\leq n$ steps?