Descriptive Complexity

Peter Mayr

Computability Theory, December 11, 2023

Idea

Measure the complexity of a class of structures (e.g. graphs) by the logical formula that describes it.

Example

A graph (V, E) has a 3-cycle iff $(V, E) \stackrel{\downarrow}{\models} \exists x \exists y \exists z : x \neq y \neq z \neq x \land E(x, y) \land E(y, z) \land E(z, x).$

Described by first order (f.o.) sentence, hence in $FO \subseteq L$.

Definition (Structures)

A **relational signature** ρ is a sequence of relational symbols R_1, \ldots, R_k each with an arity $n_1, \ldots, n_k > 0$ and constant symbols c_1, \ldots, c_ℓ .

 $\mathbf{A}:=(A,R_1^\mathbf{A},\ldots,R_k^\mathbf{A},c_1^\mathbf{A},\ldots,c_\ell^\mathbf{A})$ is a **relational structure** over ρ if each $R_i\in\rho$ has an interpretation $R_i^\mathbf{A}\subseteq A^{n_i}$ as n_i -ary relation on A and each $c_j\in\rho$ has an interpretation $c_j^\mathbf{A}\in A$ as constant in A.

Definition

Let FO be the set of first order sentences, i.e., sentences of the form

$$\exists x_1 \ \forall x_2 \ \dots \ Qx_n : \ \alpha(x_1, \dots, x_n)$$

where α is a quantifier-free sentence in some relational signature ρ (and =).

$FO \subset L$

Theorem

If a class of finite ρ -structures is definable in FO, it is decidable in L.

Proof.

Let

$$\varphi := \exists x_1 \ \forall x_2 \ \dots \ Qx_n : \ \alpha(x_1, \dots, x_n)$$

be a f.o. sentence over ρ .

Construct a logspace DTM M such that for all ρ -structures **A**,

$$\mathbf{A} \models \varphi \text{ iff } M \text{ accepts } \mathbf{A}.$$

Base case n=0: Then $\varphi=\alpha$ is a fixed variable-free Boolean combination of atomic formulas

$$R_i(c_1,\ldots,c_{n_i}), \quad c_u=c_v$$

for constants $c_1, \ldots, c_{n_i}, c_u, c_v$.

lackbox Whether $f A \models arphi$ can be checked in $O(\log(A))$ space.

$$Ex.$$
 $S = (E, C, C_2)$

binary contains

 $x = (E(c_1, c_2) \vee E(c_3, c_4)) \wedge c_1 + c_2$
 $A = (\{1, -, n\}, E^A, c_1^A, c_2^A)$

Supply with 2

Gazingly relices

Fecul valida

To ched A + K

- record
$$C, \stackrel{\triangle}{-}, C, \stackrel{\triangle}{-} \in \{1, -, n\}$$

O (logn) = year

- looking $E^{\underline{A}}(c, \stackrel{\triangle}{-}, C, \stackrel{\triangle}{-}) = O/1$

condad = que

in nyn delle en in put

- aduale $E^{\underline{A}}(c, \stackrel{\triangle}{-}, C, \stackrel{\triangle}{-}) \vee E^{\underline{A}}(c, \stackrel{\triangle}{-}, C, \stackrel{\triangle}{-})$

- ":-

$$\psi(x_1) := \forall x_2 \ldots Qx_n : \alpha(x_1, \ldots, x_n).$$

- ▶ Let M_0 be a DTM that computes $\psi(c)$ for $c \in A$ in logspace.
- ▶ To check $\varphi := \exists x_1 \psi(x)$, test all assignments of x_1 in A with M_0 .
- **Correctness:** $\mathbf{A} \models \varphi$ iff M_0 yields $\psi(c) = 1$ for some $c \in A$.
- ▶ **Complexity:** $O(\log |A|)$ space for recording the current value of x_1 and $O(\log |A|)$ space for M_0 .
- ▶ Similar for the case $\varphi := \forall x_1 \ \psi(x_1)$.
- ▶ Hence $\mathbf{A} \models \varphi$ is decidable in L.

Note

 $FO \subsetneq L$

[Parity can be computed in logspace but not expressed in FO.]

Parifix: Input w & 80,13*

Q: What is the number of 1's in w mod ??

Second order logic

Example

(V, E) is <u>3-colorable</u> iff

$$(V, E) \models \exists R \ \exists G \ \exists B \ \forall x \ \forall y : \ [R(x) \lor G(x) \lor B(x)]$$

$$\land [E(x, y) \Rightarrow ((R(x) \land R(y))' \land (G(x) \land G(y))' \land (B(x) \land B(y))')]$$

- Colors R, G, B are unary predicates (sets of vertices).
- ▶ Because of the quantification over sets, this is a second order sentence, hence in SO∃.

Definition (Existential second order logic)

Let $SO\exists$ be the set of existential second order sentences, i.e., sentences of the form

$$\exists R_1 \ldots \exists R_m \varphi$$

for relational symbols R_i and a first order sentence φ .

$SO\exists = NP$

Fagin's Theorem (1973)

A class of finite structures is definable in existential second order logic iff it is decidable in NP.

Proof idea.

 \Rightarrow Given a structure **A** and a sentence $\exists R_1 \ldots \exists R_m \varphi$, a nondeterministic TM can guess an interpretation of R_1, \ldots, R_m in polynomial time and then verify the f.o. φ in logspace.

 \Leftarrow Let N be a nondeterministic TM that runs in polynomial time. Write a sentence

$$\Phi = \exists C_1 \dots \exists C_g \exists D \colon \varphi$$

saying:

"There exists a path of consecutive configurations from start to an accepting configuration."

Assume N runs in time $\leq n^k$ on inputs of length n. Wlog $|\Delta(q, a)| = 2$ for all $q \in Q, a \in \Gamma$.

- ▶ View the configurations of a computational path of N as rows of an $n^k \times n^k$ table T with entries in $\Gamma \cup (\Gamma \times Q) =: \{\gamma_1, \ldots, \gamma_g\}$.
- ▶ C_i is a 2k-ary relation such that $C_i(t,s) = 1$ if the entry of T at time $t \in [n]^k$, space $s \in [n]^k$ is γ_i ; else 0.
- ▶ D is a k-ary relation such that D(t) = 1 if N takes transition 1 at step t; D(t) = 0 if N takes transition 0.
- ho is the Boolean formula stating that C_1, \ldots, C_g, D encode a valid accepting computation of N as in the proof that SAT is NP-complete.

Then N accepts **A** iff **A** satisfies Φ .

Inductive definitions

Transitive closure of edge relation E for graphs is not f.o. definable:

$$E^*(x,y) := x = y \vee \exists z [E(x,z) \wedge E^*(z,y)]$$

This inductive definition can be formalized via a least fixed point (LFP) operator.

Definition (FO(LFP))

Let FO(LFP) be the language of f.o. inductive definitions (FO with a least fixed point operator).

Theorem (Vardi 1982, Immerman 1982) P = FO(LFP)

Reductions

Definition

A many-one reduction f from A to B is **first order** (f.o.) if the graph of f is first order definable.

Since FO \subseteq L \subseteq P, first order reductions are weaker than logspace reductions which are weaker than polytime reductions.

Complete Problems

- in L (via f.o. reductions): Cycle: Given an undirected graph, does it contain any cycle?
- ▶ in NL (via f.o. reductions): Reachability: Given an undirected graph an vertices s, t, is there a path from s to t?
- in P (via NC reductions): Given a DTM M and n in unary, does M halt on an empty tape in ≤ n steps?
- in NP (via f.o. reductions): SAT
- ▶ in PSPACE: QBF
- in EXPTIME: Given a DTM M and n in binary, does M halt on an empty tape in ≤ n steps?