Intermediate Complexity

Peter Mayr

Computability Theory, December 6, 2023

Recall

Polytime reductions \leq_m^p induce an equivalence relation on problems in NP:

A and B are equivalent if $A \leq_m^p B$ and $B \leq_m^p A$.

Then

- P . . . equivalence class of the easiest problems in NP
- NP-complete . . . class of the hardest problems in NP

Almost all "natural" problems can be shown to be in P or NP-complete.

Question

Is there anything in between (assuming $P \neq NP$)?

ASS_ P & WP

Ladner's Theorem (1975)

Assume $P \neq NP$. Then there exists $A \in NP$ that is neither in P nor NP-complete.

Proof idea: Uhy is SAT hard?

1. Get easier version of SAT by making & puchs

Longer (padding) See Throwa, Barak.

2. Blowing holes into SAT

Proof. Limed

Consider DTMs over $\Sigma = \{0, 1\}$.

- Let M_1 , M_2 ,... be an enumeration of timed DTMs deciding the languages in P such that M_i runs in time n^i . or i upon of leading.
- Let $f_1, f_2,...$ be an enumeration of functions such that $f_i(x)$ is computable in time $|x|^i$.

Blowing holes in SAT:

Define A using a function $f: \mathbb{N} \to \mathbb{N}$ as

$$A := \{x : x \in SAT \text{ and } f(|x|) \text{ is even} \}.$$

Idea: fevers very dowly, A is more sparse dian SAT and easier to decide, but not in P.

Definition of f by DTM M

On input n in unary, compute f(n) inductively using 2 stages.

Each stage takes n steps.

Initialize f(0) = f(1) := 2.

- ▶ **Stage 1:** Compute $f(0), f(1), \ldots$ until n steps are over.
- Suppose the last value M computed was f(m) = k. Think mean.
- Stage 2:
- ▶ If k = 2i, search for $x \in \{0, 1\}^*$ in lexicographical order witnessing $L(M_i) \neq A$, i.e.,
 - 1. M_i accepts x and $(x \notin SAT \text{ or } f(|x|) \text{ is odd})$, or
 - 2. M_i rejects x and $(x \in SAT \text{ and } f(|x|) \text{ is even}).$

If M finds such x in $\leq n$ steps, f(n) := k + 1; else f(n) := k.

- ▶ If k = 2i + 1, search for $x \in \{0, 1\}^*$ in lexicographical order witnessing f_i does not reduce SAT to A, i.e.
 - 1. $x \in SAT$ and $(f_i(x) \notin SAT$ or $f(|f_i(x)|)$ is odd), or
 - 2. $x \notin SAT$ and $(f_i(x) \in SAT$ and $f(|f_i(x)|)$ is even).

If such x is found in $\leq n$ steps, f(n) := k + 1; else f(n) := k.

Runtime of M

- ▶ By construction f(n) is computed in time O(n) (in Stage 2, $x \in SAT$ is checked by a DTM that takes $\leq n$ steps).
- The time counter adds a factor log(n) (cf. Time Hierarchy Theorem).

Overall M computes f(n) in polynomial time in n.

Thus $A = \{x : x \in SAT \text{ and } f(|x|) \text{ is even} \}$ is in NP.

Claim: $A \notin P$

- ▶ Suppose otherwise that $i \in \mathbb{N}$ is minimal such that $A = L(M_i)$.
- Then for k = 2i Stage 2 of M never finds x witnessing $L(M_i) \neq A$.
- ▶ Hence *f* is eventually constant 2*i*.
- ▶ Since f(n) is odd for only finitely many $n \in \mathbb{N}$, $A = L(M_i)$ and SAT differ only in a finite initial segment.
- ▶ Then SAT $\in P$ contradicts the assumption P \neq NP.

Claim: A is not NP-complete

- ▶ Suppose otherwise that $i \in \mathbb{N}$ is minimal such that f_i reduces SAT to A.
- ► Then for k = 2i + 1 Stage 2 of M never finds x witnessing $x \in SAT$ but $f_i(x) \notin A$ (or conversely).
- ▶ Hence f is eventually constant 2i + 1.
- Since f(n) is even for only finitely many $n \in \mathbb{N}$, A is finite and in P.
- ▶ Then SAT $\in P$ contradicts the assumption P \neq NP.

Note

- ▶ Ladner's Theorem extends to yield an infinite hierarchy of intermediate problems between P and NP-complete.
- ▶ No "natural" problems of intermediate complexity are known.
- ► Fixed template Constraint Satisfaction Problems (CSP) form a large natural subclass of NP with P/NP-complete dichotomy (Bulatov, Zhuk 2017).

 $\mathsf{CSP}(\mathsf{H})$ for a fixed digraph H: Input: digraph G

Question: Is there a homomorphism $G \rightarrow H$?

Possibly NP-intermediate problems

Factoring (decision version)

Given m < n, does n have a factor d with 1 < d < m?

- ▶ in NP: yes-instances are certified by such a factor *d*
- ▶ in co-NP: no-instances are certified by prime factorization of *n*
- ▶ in BQP (bounded-error quantum polynomial time): solvable by a quantum computer in polynomial time with an error probability of at most 1/3 (Shor 1994)

Discrete Logarithm (decision version)

Given prime p, generator $a \in \mathbb{Z}_p^*$, $b \in \mathbb{Z}_p^*$ and $m \in \mathbb{N}$, is there $x \leq m$ such that

$$a^{x}=b$$
 in \mathbb{Z}_{p}

▶ in NP \cap co-NP \cap BQP (Shor 1994)

Graph Isomorphism

Given graphs G, H, are they isomorphic?

- quasi-polynomial algorithm $2^{O((\log n)^k)}$ (Babai 2015)
- open whether in co-NP
- no efficient quantum algorithm known
- ▶ GI = class of problems with polytime Turing reductions to Graph Isomorphism

Conjedured landscape

