More NP-complete problems

Peter Mayr

Computability Theory, December 1, 2023

Cliques

- ▶ A graph G has an n-clique if K_n embeds into G.
- ▶ CLIQUE := $\{(G, n) : G \text{ is a graph with } n\text{-clique}\}$

Theorem

CLIQUE is NP-complete.

Proof.

CLIQUE \in NP since a guessed *n*-clique can be verified in polynomial time.

Claim: 3SAT \leq_m^p CLIQUE

Given a 3SAT instance

$$\Phi = (a_1 \vee b_1 \vee c_1) \wedge \cdots \wedge (a_n \vee b_n \vee c_n)$$

with literals a_i, b_i, c_i .

For the reduction construct a graph G with

- ▶ 3*n* vertices labelled $a_1, b_1, c_1, \ldots, a_n, b_n, c_n$
- ▶ edges between any 2 vertices except within any triple a_i, b_i, c_i representing a clause of Φ and between a variable and its negation.

 Φ with 3n literals yields a graph with 3n vertices in polytime.

Example:
$$\Phi = (x_1 \lor x_2 \lor x_3) \land (x_1' \lor x_2' \lor x_3') \land (x_1' \lor x_2 \lor x_3)$$

Claim: Φ is satisfiable iff G has an n-clique

 \Rightarrow :

- Assume Φ has a satisfying assignment.
- ▶ In each triple a_i, b_i, c_i of G choose a vertex corresponding to a true literal in this satisfying assignment.
- ▶ These *n* vertices are each pairwise connected, hence a clique.

⇐:

- Assume *G* has an *n*-clique.
- ▶ Then any 2 vertices in that clique are in distinct clauses.
- Assign truth values to variables in Φ such that each literal labelling a vertex in the clique is true (possible since x_j, x_j' are not connected).
- Since each clause contains a vertex from the clique, this assignment satisfies Φ.

Graph coloring

- ▶ A graph *G* is *n*-**colorable** if its vertices can be colored in *n* colors such that any adjacent vertices have distinct colors.
- Equivalently, G is n-colorable iff there exists a homomorphisms $G \to K_n$. $C \to \mathcal{C}$
- ▶ n-Coloring := {G : G is n-colorable}.

Theorem

3-Coloring is NP-complete.

Proof.

3-Coloring \in NP since a guessed coloring can be verified in polynomial time.

Claim: 3SAT \leq_m^p 3-Coloring

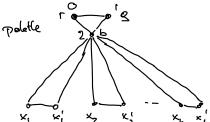
Given a 3SAT instance

$$\Phi = (a_1 \vee b_1 \vee c_1) \wedge \cdots \wedge (a_n \vee b_n \vee c_n)$$

with literals a_i, b_i, c_i .

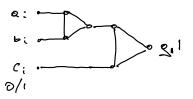
Construct G that is 3-colorable iff Φ is satisfiable as follows:

▶ Truth assignments of $x_1, ..., x_k$ correspond to colors 0, 1 of vertices.



x;, x; have complementary colors 0,1

For each clause $a_i \lor b_i \lor c_i$ connect the vertices corresponding to a_i, b_i, c_i by a **gadget graph** implementing "or".



Further NP-complete problems (Karp, 1972)

- ▶ kSAT
- ► Circuit Satisfiability Problem Given a Boolean circuit (in gates \land, \lor, \neg), is there an assignment of inputs x_1, \ldots, x_n that yields output 1?

x, 2000 0000 pml

in put more compact than Boolean formula Los SAT

- CLIQUE
- ▶ Graph k-Coloring for $k \ge 3$
- ► Graph Homomorphism Problem Given graphs G, H, is there a homomorphism $G \rightarrow H$?

- Hamiltonian Cycle
 Given a (di)graph G, is there a path that visits every vertex exactly once?
- ▶ Travelling Salesman Problem (decision version) Given a graph G with edges of specified integer weights and $\ell \geq 0$, does G have a Hamiltonian cycle with edges whose weight sum is $\leq \ell$?
- **Exact Cover** Given subsets $A_1, \ldots, A_k \subseteq \{1, \ldots, n\}$, is $\{1, \ldots, n\}$ the disjoint union of some A_i ?
- ► Knapsack (Subset Sum) Given integers a₁,..., a_n and s, does a non-empty subset of the a_i sum to s?
- MaxCut (decision version)
 Given a graph G and $k \in \mathbb{N}$, is there a cut of size at least k in G (a partition of vertices into 2 sets A, B with $\geq k$ edges between A and B)?
- ► **Sudoku** for *n*² numbers