Hierarchy Theorems

Peter Mayr

Computability Theory, November 17, 2023

So far we proved the following inclusions:

Question

Which are proper?

An efficient Universal Turing Machine

Theorem

There exists a DTM U such that $U(e,x) = M_e(x)$ for all e,x. Further, if M_e halts on x in t steps, then U halts on (e,x) in $O(t \log t)$ steps.

Proof.

U uses the tape alphabet $(0,1,\square)$ and multiple tapes:

- 1. input
- 2. work tape 1: simulating M_e 's k work tapes in k parallel tracks (cells with numbers $\equiv_k 0, \ldots, k-1$, respectively).
- 3. work tape 2: description of M_e
- 4. work tape 3: current state of M_e
- 5. scratch
- 6. output

Problem: M_e 's k tape heads can move independently left/right but U's head on tape 1 moves over all tracks in parallel.

1. **Idea:** U scans all of tape 1 to reach M_e 's current tape positions. A single step of M_e needs O(t) steps of U.

2. **Idea:** Shift the contents of the k tracks under the head of tape 1.

To avoid the same factor O(t) as in 1., add **buffer zones** on the tracks (amortized analysis).

- ► Let □ denote an extra blank symbol.
- ► Split *U*'s bi-infinite tracks into zones

belove

- ▶ Initially each R_i , L_i is half-full with \bot s and \boxtimes s.
- Position 0 always holds a non-□.
- ▶ During the computation R_i , L_i each contain either $0, 2^i$ or 2^{i+1} non- \square s, together 2^{i+1} .

How to shift a track left:

- ▶ Let *i* be smallest such that R_i is not empty (all \square).
- ▶ Put the leftmost non \Box s of R_i at 0.
- ▶ Use the next $2^i 1$ non- \square s of R_i to fill half of each R_0, \ldots, R_{i-1} .
- ▶ Do the dual on the left: for j = i 1, ..., 0, move the 2^{j+1} symbols from L_i to fill half of L_{i+1} .
- ▶ Put the update of the original symbol at 0 into L_1 .

Runtime for one shift at index *i*:

Linear the size of the involved zones L_i, \ldots, R_i , i.e. $O(\sum_{j=0}^{i} 2^{j+1}) = O(2^i)$.

After a shift at index i:

- ightharpoonup Zones L_{i-1}, \ldots, R_{i-1} are all half full.
- Needs $\geq 2^{i-1}$ left shifts until R_0, \ldots, R_{i-1} are empty again $(\geq 2^{i-1}$ right shifts until L_0, \ldots, L_{i-1} are empty).
- ▶ Hence $\leq 1/2^i$ of the shifts have index *i*.
- ▶ Since U does $\leq t$ shifts on a track, the highest possible index is $\log_2 t$ (only zones up to $R_{\log t}$, $L_{\log t}$ are used). The total run time for shifting is

$$O(k\sum_{i=0}^{\log t}\frac{t}{2^i}2^i)=O(t\log t).$$

The other tapes can be updated in constant time. Hence U on input (e, x) runs in time $O(t \log t)$.

Universal TM with time bound

By adding a **time counter** to U above, we obtain a universal TM that on input e, x, T runs $O(T \log T)$ steps and outputs $M_e(x)$ iff M_e halts on x in $\leq T$ steps. (HW)

Time constructible functions

In simulations we often want to determine whether a TM has run for t(n) steps without accruing any overhead in time complexity (i.e. in O(t(n)) time).

Definition

 $t \colon \mathbb{N} \to \mathbb{N}$ is **time constructible** if $t(n) \ge n$ and there exists a DTM with input & output tape that on input $x \in \{0,1\}^*$ outputs t(|x|) in binary in time O(t(|x|)).

Example

 $n, n \log n, n^k, 2^n$... are time constructible.

DTM to count the length of the input x in binary:

- ▶ The counter increments by 1 (requiring $O(\log n)$ steps) for every input position.
- ▶ Running time is $O(n \log n)$.

It follows that $n \log n$ can be computed in binary in $O(n \log n)$ time.

Little o-notation

Definition

For $f,g:\mathbb{N}\to\mathbb{R}^+$ we say f=o(g) (read f is little-o of g) if

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0.$$

Intuitively: g grows much faster than f.

Note

- ▶ $f = o(g) \Rightarrow f = O(g)$, but not conversely.
- ightharpoonup f
 eq o(f)

Separating time complexity classes

Time Hierarchy Theorem

Let f, g be time constructible and $f(n) \log f(n) = o(g(n))$. Then $\mathsf{DTIME}(f(n)) \subsetneq \mathsf{DTIME}(g(n))$.

Proof by diagonalization.

Define a DTM D such that on input x of length n:

- 1. Compute g(n) (possible in time O(g(n))).
- 2. Run the Universal TM U from the previous Theorem to simulate M_x on x for g(n) steps.
- 3. If M_x accepts x in g(n) steps, D rejects; else D accepts.
- 4. Then L(D) can be decided in O(g(n)).

Claim: L(D) is not decidable in O(f(n)) time.

- Suppose otherwise, that there exists M that decides L(D) in O(f(n)) time.
- ▶ By the previous Theorem, there exists a constant c such that U can simulate M on any input x in time $cf(n) \log f(n)$.
- ▶ $\exists N \ \forall n \geq N : \ cf(n) \log f(n) < g(n) \ \text{and D's simulation runs}$ to completion if M's input has length $\geq N$.
- Let x be an encoding of M with |x| ≥ N (exists since M has infinitely many encodings).
 Then x is accepted by M iff x is rejected by D.
- ▶ Hence $L(D) \neq L(M)$.

Consequences of the Time Hierarchy Theorem

```
Corollary
```

 $\mathsf{DTIME}(n^k) \neq \mathsf{DTIME}(n^\ell) \text{ if } 0 \leq k < \ell.$

Corollary

 $P \neq EXPTIME$

Proof.

HW

Space constructible functions

In simulations we often want to fix s(n) space on the working tape before starting the actual computation without accruing any overhead in space complexity.

Definition

 $s \colon \mathbb{N} \to \mathbb{N}$ is **space constructible** if $s(n) \ge \log n$ and there exists a DTM with input & output tape that on input $x \in \{0,1\}^*$ outputs s(|x|) in binary in space O(s(|x|)).

Note

s(n) is space constructible iff there exists $N \in \mathbb{N}$ and a DTM with input tape that on any input of length $n \geq N$ uses and marks off s(n) cells on its working tape and halts

Example

 $\log n, n^k, 2^n$ are space constructible.

E.g. $\log_2 n$ space is constructed by counting the length n of the input in binary.

Separating space complexity classes

Space Hierarchy Theorem

Let r, s be space constructible and r(n) = o(s(n)). Then $SPACE(r(n)) \subsetneq SPACE(s(n))$.

Proof.

Use a Universal TM for space bounded computation. (Like Time Bounded Universal TM but easier since multiple tapes are not an issue)

Consequences of the Space Hierarchy Theorem

```
Corollary
```

 $\mathsf{SPACE}(n^k) \neq \mathsf{SPACE}(n^\ell) \text{ if } 0 \leq k < \ell.$

Corollary

 $NL \neq PSPACE$

Corollary

PSPACE ≠ EXPSPACE

Proof.

HW