## P and NP

Peter Mayr

Computability Theory, November 8, 2023

# Complexity of problems

Our definition of the complexity of halting TMs can be extended to their (computable) languages.

#### Definition

```
 \begin{aligned} \mathsf{DTIME}(t(n)) &:= \{L \text{ can be decided by a DTM in time } O(t(n))\} \\ \mathsf{NTIME}(t(n)) &:= \{L \text{ can be decided by a non-deterministic TM in time } O(t(n))\} \end{aligned}
```

### Common complexity classes:

### Definition

```
\begin{array}{ll} \mathsf{P} := \mathsf{DTIME}(n^{O(1)}) = \bigcup_{k \in \mathbb{N}} \; \mathsf{DTIME}(n^k) & \mathsf{adynomial line} \\ \mathsf{NP} := \mathsf{NTIME}(n^{O(1)}) = \bigcup_{k \in \mathbb{N}} \; \mathsf{NTIME}(n^k) & \mathsf{non oblevative} \\ \mathsf{EXPTIME} := \mathsf{DTIME}(2^{n^{O(1)}}) = \bigcup_{k \in \mathbb{N}} \; \mathsf{DTIME}(2^{n^k}) \\ \mathsf{NEXPTIME} := \mathsf{NTIME}(2^{n^{O(1)}}) = \bigcup_{k \in \mathbb{N}} \; \mathsf{NTIME}(2^{n^k}) \end{array}
```

# **Graphs**

#### Definition

- A directed graph (digraph) G = (V, E) is a set  $V = \{1, \dots, n\}$  of **vertices** with a binary relation E (edges) on V.
- ▶ The **adjacancy matrix** of G is the  $n \times n$ -matrix  $(a_{ii})_{1 \le i,j \le n}$ with

$$a_{ij} = \begin{cases} 1 & \text{if } (i,j) \in E, \\ 0 & \text{else.} \end{cases}$$

 $\triangleright$   $v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_k$  is a (directed) **path** in G from vertices  $v_0$  to  $v_k$  if  $(v_i, v_{i+1}) \in E$  for all  $i \in \{0, ..., k-1\}$ .

### Example

Digraph  $G = (\{1, 2, 3\}, \{(1, 2), (2, 3), (1, 3)\})$  has adjacency matrix

$$\begin{bmatrix}
 0 & 1 & 1 \\
 0 & 0 & 1 \\
 0 & 0 & 0
 \end{bmatrix}$$





# Examples in P

# Reachability (Path)

**Input:** digraph G = (V, E) with vertices  $\{1, ..., n\}$  by its adjacency matrix

**Question:** Is there a path in G from 1 to n?

Brute force: Enumerating all paths in G is  $O(n^n)$ .

# Algorithm (Enumerate all vertices reachable from 1)

- 1.  $R := \{1\} \dots$  vertices reachable from 1  $B := \{1\} \dots$  boundary of the currently reachable set
- 2. For  $i \in B$  do
- 3.  $B := B \setminus \{i\}$
- 4. For  $j \in \{1, ..., n\}$  with  $(i, j) \in E$  do
- 5. If  $j \notin R$ , then  $R := R \cup \{j\}, B := B \cup \{j\}$ .
- 6. Return  $n \in R$ .



**Correctness:** The algorithm enumerates all vertices that are reachable from 1 into the set R. Hence it returns the correct answer in 6.

**Input size:**  $n^2$  for the adjacency matrix

### Running time:

- ▶ Loops in 2. and 4. are executed at most *n* times each.
- ▶ Updating R, B in 5. is polynomial in n.
- ▶ Hence the total running time is polynomial in *n*.

### Question

What's the space complexity of the previous algorithm?

# Theorem

Reachability is in P.



# Regular languages

#### **Theorem**

Regular language are in P.

### Proof.

Every regular language is decided by some DFA whose running time is equal to the length of the input.



# Examples in NP

# Hamiltonian cycle (Traveling Salesman)

**Input:** digraph G = (V, E) with vertices  $\{1, ..., n\}$  by adjacency matrix

**Question:** Is there a cyclic path in *G* visiting each vertex exactly once?

Brute force: Enumerating all cycles in G and checking whether one is Hamiltonian is  $O(n^n)$ .

## Non-deterministic TM N (with several tapes)

- 1. **Guess:** N non-deterministically writes n numbers from  $\{1, \ldots, n\}$  (on tape 2).
- 2. **Verify:** *N* checks whether these numbers represent a Hamiltonian cycle (on tape 3).

#### Correctness:

- ▶ If *G* has a Hamiltonian cycle, then one computational branch of *N* will find it in 1. and accept in 2.
- ▶ If *G* has no Hamiltonian cycle, then all computational branches of *N* will reject.

**Input size:**  $n^2$  for the adjacency matrix

### Running time:

- ▶ In 1. a list of *n* numbers is written in  $O(n \log(n))$  steps.
- ► In 2. check that
  - ▶ any given vertex *i* has not appeared before
  - ▶ any i and its successor j are connected by E.
- ▶ Hence the total running time is polynomial in *n*.

#### **Theorem**

Hamiltonian cycle is in NP.

#### Note

- Not known whether Hamiltonian cycle is in P.
- ▶ Deterministic algorithm using dynamic programming runs in  $O(n^22^n)$  (Bellman, Held, Karp 1962).

### Verification

Guessing and verifying is the typical structure of a nondeterministic algorithm.

#### Definition

A verifier for a language L is a DTM V such that

$$L = \{x : V \text{ accepts } (x, c) \text{ for some string } c\}.$$

Here c is a **certificate** (witness, proof of membership) that allows to verify  $x \in L$ .

A polynomial time verifier is a DTM that runs in polynomial time in |x|.

#### Note

- ► For a polynomial time verifier V we may assume that the certificate c for any x has polynomial length in |x| since V cannot access more of c anyway.
- ▶ If  $x \in L$ , the verifier V does not need to accept (x, c) for all c.
- ▶ A verifier V for L does not need to verify  $x \notin L$ .

### Example

- ▶ A certificate *c* for a digraph *G* having a Hamiltonian cycle is just the sequence of vertices forming a Hamiltonian cycle.
- ▶ Clearly such a c is polynomial in |G| and can be verified in polynomial time.
- ► What is a certificate to show that *G* does not have a Hamiltonian cycle?



#### **Theorem**

NP is the class of languages that have polynomial time verifiers.

### Proof.

 $\subseteq$ : Let  $L \in NP$  be decided by non-deterministic polytime N. Construct a polytime verifier V:

- ▶ If  $x \in L$ , let c denote the sequence of choices of N in an accepting branch for x (such c of polynomial size must exist).
- On input (x, c), V simulates N's computation on the branch c (runs in polytime in |x|).
- $\triangleright$  V accepts (x, c) if N accepts x on the branch c; else V rejects.

- $\supseteq$ : Assume L has a verifier V running in time  $\leq |x|^k$ . Construct a non-deterministic N that decides L in polytime:
  - ▶ On input x, N guesses a certificate c of length  $\leq |x|^k$ .
  - $\triangleright$  Run V on input (x, c) and accept if V accepts; else N rejects.

Note: The existence of k suffices to prove the existence of N (we don't need to know the actual value).

### In short

P=problems that can be solved in polynomial time

NP=problem for which solutions can be verified in polynomial time

The million dollar question Is P=NP?