Incomparable degrees

Peter Mayr

Computability Theory, October 30, 2023

So far we constructed only degrees $0 < 0' < 0'' < \dots$

Question

Are Turing degrees linearly ordered?

Theorem (Avoiding cones)

For every degree $\mathbf{b} > \mathbf{0}$ there exists $\mathbf{0} < \mathbf{a} < \mathbf{b}'$ such that $\mathbf{a} \wedge \mathbf{b} = \mathbf{0}$.

Proof.

B'- computable

Let B be non-computable. We want to construct A such that

- A is not computable, i.e.
 - $R_{2e}: \chi_{\Delta} \neq \varphi_{e}.$
- ▶ Whenever $C \leq_T A$ and $C \leq_T B$, then C is computable, i.e. $R_{2H(e,f)+1}: \chi_C = \varphi_e^A = \varphi_f^B \Rightarrow C$ is computable.

Here \sharp denotes a computable bijection $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$.

To satisfy these requirements for all $e, f \in \mathbb{N}$ we define initial segments σ_s of χ_A in stages.

Initialize $\sigma_0 := ()$.

Stage s = 2e: To satisfy R_{2e} , let $x := |\sigma_s|$. Put x into A iff $\varphi_{e}(x) = 0$ (\emptyset' -computable).

$$\sigma_{s+1} := egin{cases} \sigma_s \circ (1) & ext{if } arphi_e(x) \downarrow & ext{and } arphi_e(x) = 0, \\ \sigma_s \circ (0) & ext{else.} \end{cases}$$

Stage $s = 2\sharp(e, f) + 1$:

▶ Given σ_s test \emptyset' -computably whether

$$\exists \rho \ \exists \tau \ \exists x : \ \sigma_s \prec \rho, \tau, \ \varphi_e^{\rho}(x) \downarrow \neq \varphi_e^{\tau}(x) \downarrow \qquad (\dagger)$$

- ▶ Case 1, (†) holds (ρ , τ are e-splitting extensions of σ_s):
- ► Check B'-computably whether $\varphi_f^B(x) \neq \varphi_e^\rho(x)$. If yes, set $\sigma_{s+1} := \rho$; if no, $\sigma_{s+1} := \tau$.
- ▶ Then R_s holds since $\varphi_f^B \neq \varphi_e^A$.
- ▶ Case 2, (†) does not hold: Set $\sigma_{s+1} := \sigma_s$.
- ▶ Claim: If $\sigma_s \prec A$ and $\psi := \varphi_e^A$ is total, then ψ is computable.
- ▶ To compute $\psi(x)$, dovetail $\varphi_e^{\tau}(x)$ for all τ extending σ_s .
- ▶ The first converging computation yields $\psi(x)$ (Since (†) does not hold, all converging computations yield the same result).
- ▶ Then R_s holds since $\chi_C = \varphi_e^A \Rightarrow C$ computable.

Finally

- 1. $deg(A) > \mathbf{0}$ by requirements R_{2e} ,
- 2. $deg(A) \wedge deg(B) = \mathbf{0}$ by requirements $R_{2\sharp(e,f)+1}$,
- 3. $deg(A) \le deg(B)'$ since A is computable in $\emptyset' \oplus B' \equiv_T B'$ by construction.

The jump is onto degrees \geq **0'**

▶ By the Jump Theorem 4, the jump is monotonous, i.e.

$$\mathbf{b} \leq \mathbf{a} \Rightarrow \mathbf{b}' \leq \mathbf{a}'.$$

▶ Hence $\mathbf{0}' \leq \mathbf{a}'$ for every degree \mathbf{a} .

Friedberg Completeness Criterion

For every degree $b \ge 0$ ', there is a such that $b = a \lor 0$ ' = a'.

Proof

Let $B \subseteq \mathbb{N}$ with $\emptyset' \leq_T B$. Construct A such that

- $ightharpoonup A' \leq_T B$,
- \triangleright $B \leq_T A \oplus \emptyset'$

via finite initial segments σ_s ($s \in \mathbb{N}$) of A.

Initialize $\sigma_0 := ()$.

Stage s = 2e (Decide whether $e \in A'$):

Given σ_s test \emptyset' -computably whether

$$\exists \tau : \ \sigma_s \prec \tau, \ \varphi_e^{\tau}(e) \downarrow$$

Let σ_{s+1} be the smallest such τ if it exists; else $\sigma_{s+1} := \sigma_s$

Stage
$$s = 2e + 1$$
 (Code $\chi_B(e)$ into A): $\sigma_{s+1} := \sigma_s \circ (\chi_B(e))$

Let $A \subseteq \mathbb{N}$ with characteristic function $\bigcup_{s \in \mathbb{N}} \sigma_s$ (limit of the σ_s).

- 1. σ_s and hence A is computable in $B \equiv_T \emptyset' \oplus B$ by construction.
- 2. $A' <_{\tau} B$ since

$$e \in \mathcal{A}'$$
 iff $arphi_e^{\sigma_{2e+1}}(e) \downarrow$

where σ_{2e+1} is *B*-computable by 1.

- 3. σ_s is computable in $A \oplus \emptyset'$ by induction on s:
 - ▶ Given σ_{2e} , compute σ_{2e+1} using \emptyset' -oracle.
 - ▶ Given σ_{2e+1} , compute $\sigma_{2e+2} = \sigma_{2e+1} \circ (\chi_A(|\sigma_{2e+1}|))$ with A-oracle.
- 4. $B \leq_T A \oplus \emptyset'$ by 3. since $\chi_B(e)$ is the last entry in σ_{2e+2} .

The jump is not injective

Theorem (Spector (1956))

There exists a degree a > 0 such that a' = 0'.

Proof.

We want to construct $A \subseteq \mathbb{N}$ such that

► A is not computable, $R_{2e}: \chi_A \neq \varphi_e$.

► $A' \leq \emptyset'$ $R_{2e+1}: \varphi_e^A(e) \downarrow \text{ is } \emptyset'\text{-computable.}$

To satisfy these requirements for all $e \in \mathbb{N}$ define finite initial segments σ_s of A in stages.

Initialize
$$\sigma_0 := ()$$
.
Stage $s = 2e$ (Put x into A iff $\varphi_e(x) = 0$):
Let $x := |\sigma_s|$.

$$\sigma_{s+1} := \begin{cases} \sigma_s \circ (1) & \text{if } \varphi_e(x) \downarrow \text{ and } \varphi_e(x) = 0, \\ \sigma_s \circ (0) & \text{else}. \end{cases}$$

Stage s = 2e + 1 (Decide whether $e \in A'$): Given σ_s test \emptyset' -computably whether

$$\exists \tau : \ \sigma_s \prec \tau, \ \varphi_e^{\tau}(e) \downarrow$$

Let σ_{s+1} be the smallest such τ if it exists; else $\sigma_{s+1} := \sigma_s$.

Let $A \subseteq \mathbb{N}$ with characteristic function $\bigcup_{s \in \mathbb{N}} \sigma_s$. Then

- 1. σ_s and hence A is computable in \emptyset' by construction.
- 2. $A' <_{\tau} \emptyset'$ since

$$e \in A'$$
 iff $\varphi_e^{\sigma_{2e+2}}(e) \downarrow$

where σ_{2e+2} is \emptyset' -computable by 1.

