Arithmetical hierarchy and Turing jumps

Peter Mayr

Computability Theory, October 27, 2023

Question

What is the connection between

- ▶ the arithmetical hierarchy (classification of sets by definability)
- and Turing degrees (classification by computability)?

Finite approximations

Analyzing oracle machines requires computable approximations: If $\varphi_e^A(x) \downarrow$, then only a finite part of A is used in this computation.

▶ For $A \subseteq \mathbb{N}$ and $s \in \mathbb{N}$, the *s*-tuple

$$\sigma := (\chi_A(0), \chi_A(1), \dots, \chi_A(s-1)) \in \{0, 1\}^s$$

is an **initial segment** (finite approximation) of χ_A , denoted $\sigma \prec A$.

- For $\sigma \in \{0,1\}^s$ write $|\sigma| = s$, $\sigma = (\sigma(0), \ldots, \sigma(s-1))$ and $\sharp(\sigma) := \prod_{i < |s|} p_i^{\sigma(i)+1}$ (prime power encoding). Note that $|\sigma|, \sigma(i)$ are computable from $\sharp(\sigma), i$.
- For $\sigma, \tau \in \{0,1\}^*$ write $\sigma \prec \tau$ and call σ an initial segment of τ if $|\sigma| \leq |\tau|$ and $\sigma(i) = \tau(i)$ for all $i \leq |\sigma|$.

Definition

Let $A \subseteq \mathbb{N}$. If M_e^A halts on input x with output y and if u is the maximum element for which the oracle is used (queried for $u \in A$) during the computation, write

$$\varphi_e^A(x) := y$$
 $\operatorname{use}_e^A(x) := u.$

 use_e^A is called the **use function** corresponding to $\varphi_e^A(x)$.

- $\varphi_e^{\sigma}(x) := y$ if $\varphi_e^{A}(x) = y$, $\sigma \in \{0,1\}^*$ with $\sigma \prec A$ and $\operatorname{use}_e^{A}(x) < |\sigma|$ (i.e., only σ is queried).
- $\varphi_{e,s}^A(x) := y$ if $\varphi_e^A(x) = y$ is computed by M_e^A in < s steps and $e, x, y, \text{use}_e^A(x) < s$.
- $\varphi_{e,s}^{\sigma}(x) := y$ if $\varphi_{e,s}^{A}(x) = y$, $\sigma \in \{0,1\}^*$ with $\sigma \prec A$ and $\operatorname{use}_{e}^{A}(x) < |\sigma|$.
- $V_{e,s}^{\sigma} := \operatorname{domain} \varphi_{e,s}^{\sigma}$, etc.

Computable approximations

Lemma

- 1. $\varphi_e^A(x) = y$ iff $\exists s \ \exists \sigma \prec A : \ \varphi_{e,s}^{\sigma}(x) = y$ 2. If $\varphi_{e,s}^{\sigma}(x) = y$, then $\forall t \geq s \ \forall \tau \text{ suce } \sigma : \ \varphi_{e,t}^{\tau}(x) = y$.
- 3. $W_{e,s}^{\sigma}$ (i.e. $\{(e,\sharp(\sigma),x,s): \varphi_{e,s}^{\sigma}(x)\downarrow\}$) is computable.

Proof.

- 1. Any computation that halts, does so after finitely many steps, using a finite part of the oracle.
- 2. If a computation halts after s steps with access to σ , its output will not change when given more time and a larger part of the oracle.
- 3. Run M_e on x with queries to σ until it halts or s steps are completed.



Post's Theorem relating Σ_n and $\emptyset^{(n)}$

Recall

- ▶ $B \subseteq \mathbb{N}$ is Σ_n if there is some computable $R \subseteq \mathbb{N}^{n+1}$ such that $B = \{x : \exists y_1 \ \forall y_2 \dots \exists / \forall y_n \ (x, y_1, \dots, y_n) \in R\}.$
- $A' := \{x : \varphi_x^A(x) \downarrow \}.$

Post's Theorem

Let $n \in \mathbb{N}, B \subseteq \mathbb{N}$.

- 1. B is Σ_{n+1} iff B is c.e. in some Π_n -set iff B is c.e. in some Σ_n -set.
- 2. $\emptyset^{(n)}$ is Σ_n -complete for n > 0.
- 3. B is Σ_{n+1} iff B is $\emptyset^{(n)}$ -c.e.
- 4. B is Δ_{n+1} iff $B \leq_T \emptyset^{(n)}$.

Note: Properties of Σ_1 relativize to $\Sigma_{n+1} = \Sigma_1^{\emptyset^{(n)}}$ by 3.

Proof 1.

 \Rightarrow : Let $B \in \Sigma_{n+1}$. Then we have $R \in \Pi_n$ such that

$$x \in B$$
 iff $\exists y \ R(x, y)$.

Then $B \in \Sigma_1^R$, hence R-c.e.

 \Leftarrow : Assume *B* is *A*-c.e. for some $A \in \Pi_n$. Then for some *e*

$$\begin{aligned} x \in B \text{ iff } x \in W_e^A \\ \text{iff } \exists s \, \exists \sigma \in \{0,1\}^*: \ \sigma \prec A \land \underbrace{x \in W_{e,s}^\sigma}_{\text{computable}} \end{aligned}$$

Claim: $\sigma \prec A$ is Σ_{n+1}

$$\sigma \prec A \text{ iff } \forall y \leq |\sigma|: \underbrace{\sigma(y) = \chi_A(y)}_{\Pi_n} \vee \underbrace{(\sigma(y) = 1, y \in A)}_{\Sigma_{n+1}} \vee \underbrace{(\sigma(y) = 0, y \not\in A)}_{\Sigma_n}$$

Since Σ_{n+1} is closed under bounded \forall , the claim follows.

Then $B \in \Sigma_{n+1}$.

Note: A-c.e = \bar{A} -c.e. yields the second equivalence in 1.

Proof

2. Show $\emptyset^{(n)}$ is Σ_n -complete for n > 0 by induction.

Base case: For n = 1, $\emptyset' = K$ is Σ_1 -complete.

Induction step: Let $B \subseteq \mathbb{N}$. Then

$$B \in \Sigma_{n+1}$$
 iff B is c.e. in some Σ_n set by 1. iff B is c.e. in $\emptyset^{(n)}$ by induction assumption iff $B \leq_m \emptyset^{(n+1)}$ by the Jump Theorem 2.

Hence $\emptyset^{(n+1)}$ is Σ_{n+1} -complete.

- 3. follows from 1. and 2.
- 4. $B \in \Delta_{n+1}$ iff $B, \bar{B} \in \Sigma_{n+1}$ iff B, \bar{B} are $\emptyset^{(n)}$ -c.e. by 3. iff B is $\emptyset^{(n)}$ -computable by Complementation Thm.