Turing degrees

Peter Mayr

Computability Theory, October 25, 2021

Turing reductions

A, B denote subsets of \mathbb{N} throughout.

Definition

B is **Turing reducible** to *A* (denoted $B \leq_{\mathcal{T}} A$) if *B* is computable in *A*.

Many-one vs Turing reduction

- ▶ $B \leq_m A$: \exists computable f such that $\chi_B = \chi_A \circ f$ Oracle A is queried only once after encoding x as f(x).
- ▶ $B \leq_T A$: χ_B is recursive in χ_A Oracle χ_A can be used several times in defining χ_B .

Turing reductions are the most general computable reductions from B to A.



Definition

B is computably enumerable in A if $B=W_e^A$ for some e where $W_e^A=\mathrm{domain}\varphi_e^A.$

Our current theory for c.e. sets relativizes to A-c.e. sets.

Relativized Complementation Theorem

 $B \leq_T A$ iff B and \bar{B} are c.e. in A.

Roof: HW

Theorem

TFAE:

- 1. *B* is c.e. in *A*;
- 2. $B = \emptyset$ or B is the range of some A-computable total function;
- 3. B is Σ_1^A .

Turing degrees

Definition

- ▶ *A* is **Turing equivalent** to *B* (denoted $A \equiv_T B$) if $A \leq_T B$ and $B \leq_T A$.
- $ightharpoonup \equiv_{\mathcal{T}}$ is an equivalence relation on the subsets of \mathbb{N} .
- ► The **Turing degree** of *A* is the equivalence class

$$\deg(A) := \{B : B \equiv_{\mathcal{T}} A\}$$

- A degree is c.e. if it contains a c.e. set.
- ► The set of all degrees **D** is partially ordered by

$$deg(A) \leq deg(B)$$
 iff $A \leq_T B$.

Basic order properties

1. The smallest degree in **D** is

$$\mathbf{0} := \deg(\emptyset) = \{A : A \text{ is computable}\}\$$

2. Any two degrees have a supremum (least upper bound)

$$\deg(A)\vee\deg(B)=\deg(A\oplus B)$$

where

$$A \oplus B = \{2x : x \in A\} \cup \{2x+1 : x \in B\}$$

encodes the disjoint union of A and B. (HW)

- The supremum of infinitely many degrees and the infimum (greatest lower bound) of two degrees need not always exist. (postponed)
- 4. **D** is a ∨-semilattice, not a lattice.

Turing jump

Problem

Given a degree $\mathbf{a} = \deg(A)$ find a degree $\mathbf{b} = \deg(B)$ that is strictly greater than \mathbf{a} (denoted $\mathbf{a} < \mathbf{b}$). In other words, find B that is not A-computable.

Definition

For $A \subseteq \mathbb{N}$, the relativized diagonal Halting Problem

$$A' := K^A = \{x : \varphi_x^A(x) \downarrow\} = \{x : x \in W_x^A\}$$

is the **jump** of A.

Basic properties of the jump

Jump Theorem

For $A, B \subseteq \mathbb{N}$

- 1. A' is A-c.e.;
- 2. B is A-c.e. iff $B <_m A'$;
- 3. $A <_{\tau} A'$;
- 4. $B \leq_T A$ iff $B' \leq_m A'$;
- 5. If $B \equiv_T A$, then $B' \equiv_m A'$.

Simplified for hed

Kiso.a.

Bisce. if Benk

Proof 1.

By the Relativized Enumeration Theorem we have z such that

$$\forall e, x : \varphi_e^A(x) = \varphi_z^A(e, x).$$

Then $\psi(x) := \varphi_z^A(x, x)$ is A-computable and $A' = \operatorname{domain} \psi$ is A-c.e.

Proof 2.

 \Rightarrow : Let $B = \operatorname{domain} \varphi_e^A$ for some e. By the Relativized S_m^n -Theorem we have a computable s such that

$$\forall x, y : \varphi_e^A(x) = \varphi_{s(x)}^A(y).$$

Then
$$x \in B$$
 iff $\varphi_e^A(x) \downarrow$ iff $\varphi_{s(x)}^A(s(x)) \downarrow$ iff $s(x) \in A'$.

Hence s is a many-one reduction from B to A'.

 \Leftarrow : Let s be a many-one reduction from B to A'.

Then
$$x \in B$$
 iff $\varphi_{s(x)}^A(s(x)) \downarrow$ iff $\varphi_e^A(x) \downarrow$ (where $e \in \mathbb{N}$ is determined by s)

Hence $B = \operatorname{domain} \varphi_e^A$ is A-c.e.

Proof 3, 4. (HW)

Jump of degrees

Definition

For the degree a the jump

$$\mathbf{a'} := \deg(A')$$
 for some $A \in \mathbf{a}$

is welldefined by the Jump Theorem 5.

Hence there is an infinitely ascending chain of degrees:

$$\mathbf{0} = \deg(\emptyset) = \{A : A \text{ is computable }\}$$
 $\mathbf{0}' = \deg(\emptyset') = \deg(K)$
 $\mathbf{0}'' = \deg(\emptyset'') = \deg(F) = \deg(T)$

Outlook

Question

- ▶ Post's Problem: Is there a c.e. degree other than 0 and 0'?
- Are there incomparable degrees?
- Does the infimum exists for any two degrees?