Oracles and relativization

Peter Mayr

Computability Theory, October 23, 2023

Idea: Measure the hardness of a problem P by considering the problems that can be solved using P as oracle.

An oracle is a black box that solves

▶ decision problems: Is $x \in A$?

or

• function problems: What is f(x) for a dobat function $\int_{-\infty}^{\infty} f(x) dx$

Oracle machines

We use the definition from

➤ Van Melkebeek, Randomness and Completeness in Computational Complexity, 2000.

Definition

An **oracle TM** M^0 (for O = A, f) is a DTM with additional oracle tape and two special states query, response.

Computation is as usual except in query:

- ▶ Then the content of the oracle tape is considered as input x for the oracle O: Is $x \in A$? What is f(x)?
- ightharpoonup x is replaced by the answer: 0/1, f(x)
- M^o changes to response.

Hence an instance of O is solved in a single step of M^O .

Alternative definition for oracle machines

Soare, Turing computability: theory and applications, 2016.

Alternative Definition

For $A \subseteq \mathbb{N}$ an **oracle TM** M^A is a DTM with additional oracle tape that is <u>read-only</u> and contains the characteristic function χ_A as sequence over $\{0,1\}$.

Note

- ► Here M^A can look up whether $x \in A$ on the oracle tape in $\sim x$ steps.
- ▶ Recall: (The graph of) a function $f: \mathbb{N} \to \mathbb{N}$ encodes as a subset of \mathbb{N} ,

$$A := \{2^x 3^{f(x)} : x \in \mathbb{N}\}.$$

Conversely subsets encode as characteristic functions. Hence M^f and M^A have the same computational power.

➤ The difference in the two definitions is relevant only for analysing their different computational complexity.

Convention

We will only consider oracles $A \subseteq \mathbb{N}$ in the following.

(No restriction and makes notation easier and concrete)

Note

- Every oracle TM M^A can be coded as an ordinary DTM (independent of A) by some $e \in \mathbb{N}$.
- ▶ If the oracle TM M_e^A on input x halts with output y, write

$$\varphi_e^A(x)=y.$$

 $\varphi_e^{(k),A} \colon \mathbb{N}^k \to_p \mathbb{N}$ is the partial function computed by M_e^A .

Computations with oracles

Definition

Fix $A \subseteq \mathbb{N}$.

1. $f: \mathbb{N}^k \to_p \mathbb{N}$ is **computable in** A if there exists e such that

$$f=\varphi_e^A$$

 $P \subseteq \mathbb{N}^k$ is **computable in** A if its characteristic function is.

2. $g: \mathbb{N}^k \to_p \mathbb{N}$ is **recursive in** A if g is obtained by composition, primitive recursion and search μ from 0, successor, projections and the characteristic function χ_A of A. $P \subseteq \mathbb{N}^k$ is **recursive in** A if its characteristic function is.

Theorem

A function f is computable in A iff f is recursive in A.

Proof.

Relativization of the proof that computable = recursive.

Example

- ▶ If *A* is computable, then computable in *A* is just computable.
- ► Every c.e. set is <u>computable in K.</u> If $f: A \to K$ is a many-one reduction, then $\chi_A = \chi_K \circ f$.

Basic results relativized to A

Our current theory for computable functions can be relativized to functions that are computable in A.

Relativized Enumeration Theorem

There exists $z \in \mathbb{N}$ such that for all $A \subseteq \mathbb{N}$ and all $x, y \in \mathbb{N}$

$$\varphi_x^A(y) = \varphi_z^A(x,y).$$

Relativized S_n^m -Theorem

For every $m, n \geq 1$ there exists an <u>injective computable function</u> s_n^m such that for all $A \subseteq \mathbb{N}$ and all $x \in \mathbb{N}, \bar{y} \in \mathbb{N}^m, \bar{z} \in \mathbb{N}^n$

$$\varphi_{\mathbf{s}_n^m(\mathbf{x},\bar{\mathbf{y}})}^{\mathbf{A}}(\bar{\mathbf{z}}) = \varphi_{\mathbf{x}}^{\mathbf{A}}(\bar{\mathbf{y}},\bar{\mathbf{z}}).$$

Proof sketch

- ▶ $M_{s(x,y)}$ on input z simulates M_x on input (y,z), which makes s(x,y) computable and independent of A.
- ▶ s can be made injective (e.g. by setting the accept state of $M_{s(x,y)}$ as $2^x 3^y$).

Relativized Recursion Theorem

For all $A \subseteq \mathbb{N}$ and all $x, y \in \mathbb{N}$, if $\underline{f(x, y)}$ is computable in A, then there is a computable function n(y) such that

$$\varphi_{n(y)}^{A} = \varphi_{f(n(y),y)}^{A}.$$

Furthermore n(y) does not depend on A.

Proof sketch

n is obtained from the computable (independent of A) d(x,y) obtained from the S_n^m -Theorem.