Approximations and the Friedberg Splitting Theorem

Peter Mayr

Computability Theory, October 20, 2023

Computable approximation of sets

Definition

- $\varphi_{e,s}(x) := y$ if e, x, y < s and the DTM M_e computes $\varphi_e(x) = y$ in < s steps.
- If such y exists, say $\varphi_{e,s}(x)$ converges and write $\varphi_{e,s}(x) \downarrow$; else $\varphi_{e,s}(x)$ diverges and $\varphi_{e,s}(x) \uparrow$.
- $V_{e,s} := \operatorname{domain} \varphi_{e,s}$

Note

- ▶ If $x \in W_{e,s}$, then x, e < s.
- ▶ If s < t, then $W_{e,s} \subseteq W_{e,t}$.
- $ightharpoonup W_e = \bigcup_{s \in \mathbb{N}} W_{e,s}$

Lemma

The following predicates are computable:

- 1. $\{(e, x, y, s) : \varphi_{e,s}(x) = y\}$
- 2. $\{(e, x, s) : \varphi_{e,s}(x) \downarrow \}$
- 3. $W_{e,s}$ (finite)

Proof.

Compute $\varphi_e(x)$ until some output is found or s steps are completed.

A property of c.e. sets W_e is **dynamic** if it is described in terms of $W_{e,s}$ (time dependent).

So far most properties were **static** (e.g. lattice theoretic).

A static result with dynamic proof

Friedberg Splitting Theorem

Let $A \subseteq \mathbb{N}$ be c.e., noncomputable. Then there exist c.e. B_0, B_1 such that

 $A = B_0 \cup B_1, \ B_0 \cap B_1 = \emptyset$, and B_0, B_1 are computably inseparable.

In particular B_0, B_1 are noncomputable.

Proof.

Enumerate A and put elements into B_0, B_1 to meet **requirements**

$$R_{e,i}: W_e \cap B_i \neq \emptyset$$

for $e \in \mathbb{N}$, $i \in \{0,1\}$ if possible (Then B_i cannot be computable). At each stage try to satisfy $R_{e,i}$ of **highest priority** (smallest e) that does not hold yet.

Let $f: \mathbb{N} \to \mathbb{N}$ be injective, computable with $f(\mathbb{N}) = A$.

Stage s=0:
$$B_{0,0} := B_{1,0} := \emptyset$$

Stage s+1: Let e < s and $i \in \{0,1\}$ be minimal such that

$$f(s) \in W_{e,s}$$
 and $W_{e,s} \cap B_{i,s} = \emptyset$.

Set

$$B_{i,s+1} := B_{i,s} \cup \{f(s)\}$$
 and $B_{1-i,s+1} := B_{1-i,s}$

Then $R_{e,i}$ received attention and remains satisfied forever. If no such e, i exist, put f(s) into $B_{0,s+1}$.

By construction

$$B_i := \bigcup_{s \in \mathbb{N}} B_{i,s}, \quad i \in \{0,1\}$$

is c.e., B_0 , B_1 are disjoint and $B_0 \cup B_1 = A$.

It remains to show: B_0, B_1 are computably inseparable.

Seeking a contradiction, suppose there is a computable ${\it C}$ with

$$B_0 \subseteq C, \ B_1 \cap C = \emptyset.$$

For $C = W_e$, $\bar{C} = W_d$,

$$W_{d,s} \cap B_{0,s} = \emptyset$$
 and $W_{e,s} \cap B_{1,s} = \emptyset \ \forall s \in \mathbb{N}$.

Still $R_{d,0}$ and $R_{e,1}$ never received attention. Why not?

- e_s in the construction above takes no value more than twice. Hence $\exists N \ \forall s > N : e_s > e, d$.
- ▶ $f(s) \notin W_{d,s}$ for s > N because else we'd put $f(s) \in B_{0,s+1}$ and $R_{d,0}$ received attention instead of $R_{e_s,i}$ at stage s+1.
- ▶ Similar $f(s) \notin W_{e,s}$ for any s > N.

Hence

$$f(s) \notin W_{e,s} \cup W_{d,s} \quad \forall s > N$$
 (†)

Claim:
$$\bar{A} = \bigcup_{s>N} (W_{e,s} \cup W_{d,s}) \setminus \{f(0), \dots, f(s-1)\}$$

- ▶ \supseteq : Clearly $f(0), \ldots, f(N)$ is not in the set on the right. Suppose $f(t) \in W_{e,s} \cup W_{d,s}$ for $t \ge s > N$. Then $f(t) \in W_{e,t} \cup W_{d,t}$ contradicts (\dagger) .
- ▶ ⊆: Since $W_e \cup W_d = \mathbb{N}$, every $x \in \bar{A}$ occurs in some $(W_{e,s} \cup W_{d,s}) \setminus \{f(0), \ldots, f(s-1)\}$ for s > N.

By this claim \bar{A} is c.e. contradicting the assumption that A is not computable.

Thus there are no e, d as above and B_0, B_1 are computably inseparable.

Note

The proof is based on a simultaneous enumeration of all c.e. sets to construct $B_{i,s}$.

By (\dagger) f(s) appears in A "earlier" than in W_e or W_d .