Productive and creative sets

Peter Mayr

Computability Theory, October 13, 2023

So far all naturally occurring c.e. sets that are not computable (halting problem, acceptance problem) are Σ^0_1 -complete with respect to many-one reductions.

Question

Is every non-computable c.e. set many-one complete for Σ_1^0 ?

The answer requires quite a bit of preparation.

Recursion Theorem

Theorem (Kleene)

For every computable function f there exists $n \in \mathbb{N}$ (a "fixed point" of f) such that

$$\varphi_n = \varphi_{f(n)}.$$

We prove a stronger version on the next page.

Corollary

domain Pu

There exists $n \in \mathbb{N}$ such that $W_n = \{n\}$.

Proof.

- ▶ The partial function $\psi(x,y) := x$ if x = y is computable.
- ▶ By the s-m-n Theorem there exists a computable f such that $\psi(x,y) = \varphi_{f(x)}(y)$. So $W_{f(x)} = \{x\}$.
- ▶ By the Recursion Theorem there exists n such that $W_n = W_{f(n)} = \{n\}.$

Uniform Recursion Theorem (Kleene)

For every computable f(x, y) there exists a computable h(y) such that

$$\forall y, z : \varphi_{h(y)}(z) = \varphi_{f(h(y),y)}(z)$$

Proof.

▶ Define a computable *d* by

$$arphi_{d(x,y)}(z) := egin{cases} arphi_{arphi_x(x,y)}(z) & ext{if } arphi_x(x,y) \downarrow, \ ext{undefined} & ext{else}. \end{cases}$$

- ► Then $f(d(x,y),y) \stackrel{\longleftarrow}{=} \varphi_v(x,y)$ for some v.
- \blacktriangleright h(y) := d(v, y) is the required fixed point since

$$\varphi_{\underline{d(v,y)}} = \varphi_{\varphi_v(v,y)} = \varphi_{f(\underline{d(v,y)},y)}.$$

Creative sets

Question

How to show a c.e. set $A \subseteq \mathbb{N}$ is not computable?

Recall: Every c.e. A is of the form $W_x := \operatorname{domain} \varphi_x^{(1)}$.

A is **not** computable iff \bar{A} is not c.e.

iff
$$\forall x \ \bar{A} \neq W_x$$

iff $\forall x \ [W_x \subseteq \bar{A} \Rightarrow \exists y \ y \in \bar{A} \setminus W_x]$

Definition

 $B \subseteq \mathbb{N}$ is **productive** if there exists a total computable function p:

$$\forall x \ W_x \subseteq B \Rightarrow p(x) \in B \setminus W_x$$

 $A \subseteq \mathbb{N}$ is **creative** if A is c.e. and \bar{A} is productive.

Note

productive = p produces witnesses for not being c.e.

Example

The complement of $K = \{x : \varphi_x(x) \downarrow \}$ is productive. \checkmark

- ▶ Then $x \notin W_x$ since otherwise $\varphi_x(x) \downarrow$ yields $x \in K$.
- ▶ Further $x \notin K$. Hence $x \in \bar{K} \setminus W_x$.

Thus K is creative.

Goal

Show Σ_1^0 -complete = creative.

Σ_1^0 -complete \Rightarrow creative

Theorem

Every Σ_1^0 -complete set C is creative.

Proof.

Assume $K \leq_m C$ via a total computable f, i.e.,

$$x \in K \text{ iff } f(x) \in C$$

It remains to show that \bar{C} is productive.

- ▶ Assume $W_x \subseteq \bar{C}$ for some x. Then $f^{-1}(W_x) \subseteq \bar{K}$.
- Note there exists a total computable g such that

$$\varphi_{\mathsf{X}}(f(\mathsf{y})) = \varphi_{\mathsf{g}(\mathsf{X})}(\mathsf{y}) \ \forall \mathsf{y}.$$

- ► Then $W_{g(x)} = f^{-1}(W_x)$.
- ▶ $W_{g(x)} \subseteq \bar{K}$ implies $g(x) \in \bar{K} \setminus W_{g(x)}$ as in the previous ex.
- ► Thus $fg(x) \in f(\bar{K}) \subseteq \bar{C}$ and $fg(x) \notin W_x$. So \bar{C} is productive via $\int_{\bar{C}} e^{-x} dx$.

Creative $\Rightarrow \Sigma_1^0$ -complete

Theorem (Myhill, 1955)

A set is creative iff it is Σ_1^0 -complete.

Proof

←: already done

 \Rightarrow : Let C be creative and p total computable such that

$$\forall x \ W_x \subseteq \bar{C} \Rightarrow p(x) \in \bar{C} \setminus W_x$$

Let A be Σ^0_1 . We construct a many-one reduction ph from A to C: Consider

$$\varphi_{f(x,y)}(z) := \begin{cases}
1 & \text{if } z = p(x), y \in A, \\
\text{undefined} & \text{else.}
\end{cases}$$

By the Uniform Recursion Theorem, we have computable h such that

$$\varphi_{h(y)}(z) = \varphi_{f(h(y),y)}(z) \quad \forall y, \mathbf{z}.$$

Then

$$W_{h(y)} = \begin{cases} \{ph(y)\} & \text{if } y \in A \\ \emptyset & \text{else.} \end{cases}$$

Claim: ph is a many-one reduction from A to C.

- 1. Assume $y \notin A$: Then $W_{h(y)} = \emptyset \subseteq \bar{C}$ yields $ph(y) \in \bar{C} \setminus \emptyset$.
- 2. Assume $y \in A$: Then $W_{h(y)} = \{ph(y)\} \not\subseteq \bar{C}$ because otherwise $ph(y) \in \bar{C} \setminus \{ph(y)\}$. Hence $ph(y) \in C$.

All Σ_1^0 -complete sets are isomorphic via computable functions

Theorem (Myhill)

For every creative set C there exists a computable bijection $f: \mathbb{N} \to \mathbb{N}$ such that

$$C = f(K)$$

Proof.

Omitted.