Many-one completeness for arithmetical hierarchy

Peter Mayr

Computability Theory, October 9, 2023

What are the hardest Σ_n^0 -problems?

To simplify notation we only consider subsets of \mathbb{N} .

Recall

▶ For $A, B \subseteq \mathbb{N}$, A is many-one reducible to B (short $A \leq_m B$) if there exists a total computable function $f : \mathbb{N} \to \mathbb{N}$:

$$\forall x \in \mathbb{N} : x \in A \text{ iff } f(x) \in B.$$

▶ A is c.e. iff $A \leq_m AP$ (HW). Hence the acceptance problem is "hardest" among Σ_1^0 -sets.

Question

Can this be generalized to higher levels of the arithmetical hierarchy?

Closure under many-one reductions

Lemma

If $A \leq_m B$ and B is Σ_n^0 , then A is Σ_n^0 (dually for Π_n^0).

Proof. $\mu \rightarrow \omega$

from A to B

Assume $f: A \to B$ is a many-one reduction and B(z) is Σ_n^0 . Then

$$A(x) \equiv B(f(x))$$

is Σ_n^0 since Σ_n^0 is closed under substitution by total computable functions.

Σ_n^0 -complete sets

Definition

 $C \subseteq \mathbb{N}$ is Σ_n^0 -complete if

- 1. C is Σ_n^0 and
- 2. for every $\sum_{n=0}^{\infty} \operatorname{set} A$: $A \leq_{m} C$.

Theorem

For each $n \ge 1$

- 1. Σ_n^0 -complete sets exist;
- 2. no Σ_n^0 -complete set is Π_n^0 .

Universal \Rightarrow complete

Proof.

1. A universal Σ_n^0 -predicate $U_n(e,x)$ is Σ_n^0 -complete since for each A in Σ_n^0 , we have $e \in \mathbb{N}$:

$$A(x)$$
 iff $U_n(e,x)$.

2. Recall: $K_n(x) = U_n(x,x)$ is Σ_n^0 , not Π_n^0 .

Let C be Σ_n^0 -complete.

Then
$$K_n \leq_m C$$
 and C cannot be Π_n^0 either.

Further complete examples 1

$$T = \{e : \varphi_e \text{ is total}\}\ \text{is } \Pi_2^0\text{-complete}.$$

Proof.

Recall T is Π_2^0 . Let R be computable and

$$A(x) \equiv \forall y \exists z \ R(x, y, z)$$

$$(\Pi_2^0)$$

- ▶ Define $\psi(x,y) := \mu z \ R(x,y,z)$.
- ▶ By the S_n^m -Theorem for m = n = 1, we have a computable $h := S_1^1$ such that

$$\psi(x,y) = \varphi_{h(x)}(y)$$
 for all x,y .

- Then $x \in A$ iff $\forall y \ \varphi_{h(x)}(y) \downarrow$ iff $\varphi_{h(x)}$ is total iff $h(x) \in T$.
- ▶ Hence the S_n^m -Theorem yields a many-one reduction h from A to T.

Further complete examples 2, 3

The diagonal halting problem $K = \{x : \varphi_x(x) \downarrow \}$ is Σ_1^0 -complete.

Proof

Let R be computable and

$$A(x) \equiv \exists y \ R(x, y) \tag{Σ_1^0}$$

- ▶ Define $\psi(x,z) := \mu y \ R(x,y)$ (independent of z!).
- ▶ By the S_n^m -Theorem, we have a computable h such that

$$\psi(x,z) = \varphi_{h(x)}(z)$$
 for all x,z .

Then $x \in A$ iff $\psi(x, z) \downarrow$ iff $\varphi_{h(x)}(h(x)) \downarrow$ iff $h(x) \in K$.

 $K_n := \{x : U_n(x,x)\}$ is Σ_n^0 -complete for any $n \ge 1$.