Normal Form Theorem for recursive functions

Peter Mayr

Computability Theory, October 2, 2023

Gödel numbering of DTM

To show that computable functions on $\mathbb N$ are recursive we first encode DTMs and their configurations as natural numbers.

- ▶ Let $2 = p_0 < p_1 < p_2 < \dots$ be the enumeration of all primes.
- ▶ $\forall x \in \mathbb{N} \setminus \{0\} \exists$ unique $(x)_0, (x)_1, \dots \in \mathbb{N}$, almost all 0:

$$x = \prod_{i \in \mathbb{N}} p_i^{(x)_i}$$
 Princ tachorization Then

The exponent $(x)_i$ of p_i is primitive recursive in x, i.

- ightharpoonup Recall $i \mapsto p_i$ is primitive recursive,
- $(x)_i = \mu(t < x)[p_i^{t+1} \text{ does not divide } x]$ is primitive recursive.
- ▶ Encode a tuple $(a_0, ..., a_n) \in \mathbb{N}^*$ as

$$a:=p_0^{a_0+1}\cdots p_n^{a_n+1}\in\mathbb{N}.$$

Then *n* and a_i for all $i \leq n$ are primitive recursive in a.

Definition

Let $M = (Q, \{0,1\}, \Gamma, s, t, r, \delta)$ be a DTM with

- ightharpoonup n states $Q = \{1, \ldots, n\}$,
- ightharpoonup tape alphabet $\Gamma = \{ \gamma_0 = \Box, \gamma_1 = 1, \gamma_2 = 0, \gamma_4, \ldots, \gamma_m \}$,

We define

$$a_0 := 2^{|Q|} 3^{|\Gamma|} 5^s 7^t 11^r$$

and encode the *i*-th transition $\delta(q,\gamma_k)=(p,\gamma_\ell,d)$ for $1\leq i\leq (n-2)m$ as

$$a_i := 2^q 3^k 5^p 7^\ell 11^{1+d}$$
.

Then the **prime power encoding** of M is

$$\sharp(M)=\prod_{i=0}^{(n-2)m}p_i^{a_i}.$$

Definition

A configuration (q, α, k) of the DTM M is encoded as

$$\sharp(q,\alpha,k):=2^q3^{\prod_{i\in\mathbb{N}}p_i^{\alpha(i)}}5^k$$

Note

- ▶ The encoding $\sharp(M)$ essentially IS (the transition function of) M.
- All constituents of $\sharp(M)$ and of the encoding of a configuration are primitive recursive.
- ► The predicate "x is the prime power encoding of a DTM" is primitive recursive.
- Let $c_0 < c_1 < \dots$ be the enumeration of prime power encodings $\sharp(M)$ of DTMs.

 $\mathbb{N} o \mathbb{N}, \ e \mapsto c_e$, is a primitive recursive enumeration of all DTMs.

Computable functions are recursive

Recall our encoding of tuples of natural numbers as strings:

- ▶ $n \in \mathbb{N}$ is represented as $\underbrace{1 \dots 1}_{n+1}$
- (m, n) as $1^{m+1}01^{n+1}$

Definition

For $e \in \mathbb{N}$, let $\varphi_e^{(k)} \colon \mathbb{N}^k \to_p \mathbb{N}$ be the k-ary partial function computed by the e-th DTM M_e [i.e. $\sharp(M_e) = c_e$]. $\varphi_e^{(k)} = 3$ iff M_e on input 110 [1] halfs with Lagrange Confidence of the sour DTM M_e [Normal Form Theorem (Kleene)

For every $k \in \mathbb{N} \setminus \{0\}$ there exists a primitive recursive predicate $T^{(k)}(e, \bar{x}, y)$ and a primitive recursive function u such that

$$\varphi_e^{(k)}(\bar{x}) = u(\mu y T^{(k)}(e,\bar{x},y)).$$

Proof sketch for k = 1.

Claim 1:

 $\operatorname{succ}(c) := \sharp(\operatorname{successor} \text{ of the configuration with encoding } c)$

is primitive recursive.

Let c be the encoding of a configuration. Then

- $ightharpoonup q := (c)_0$ is its state,
- \triangleright $k := (c)_2$ is the position of the head,
- $i := ((c)_1)_k$ is the index of the cell content γ_i .

Then

$$\operatorname{succ}(e,c) := \begin{cases} 2^{p}3^{(c)_{1} \cdot p_{k}^{-i+j}} 5^{\max(k+d,0)} & \text{if } \delta(q,\gamma_{i}) = (p,\gamma_{j},d), \\ c & \text{if } q \in \{t,r\}. \end{cases}$$

Note that $\underline{p,j,d^{4}}$ are primitive recursive from e,q,i. Claim 1 is proved.

Claim 2:

$$\operatorname{config}(e, x, n) := \sharp(\operatorname{configuration of } M_e \operatorname{on input } x \operatorname{ at step } n)$$

is primitive recursive by the recursion scheme:

$$\begin{aligned} &\operatorname{config}(e,x,0) := 2^{s} 3^{\prod_{i \le |x|} p_i^{x_i}} 5^{0} \\ &\operatorname{config}(e,x,n+1) := \operatorname{succ}(\operatorname{config}(e,x,n)) \end{aligned}$$

Claim 3:

Assume M_e has computed $\varphi_e(x)$ iff it is in the accept state t. Then

$$halt(e, x) := \mu n [(config(e, x, n))_0 = t]$$

is recursive and yields the number of steps n for M_e to write $\varphi_e(x)$ on the tape and halt.

Then $\varphi_e(x)$ is primitive recursive from config(e, x, halt(e, x)).

Consequences of the Normal Form Theorem

- A partial function on \mathbb{N} is computable (by a DTM) iff it is recursive (supporting the Church-Turing thesis again).
- Normal Form Theorem are universal, i.e., independent of the function φ_e .
- Recursive functions can be defined with at most one application of unbounded search μ .

Corollary (Enumeration Theorem and Universal Machine)

 $\psi(e,\bar{x}) := \varphi_e(\bar{x})$ is recursive.

Proof.

Immediate from the Normal Form Theorem.

Question

Why does the diagonalization argument not yield a computable function $d(x) := \varphi_x(x) + 1$ that is not recursive?

Dually to the Enumeration Theorem we have:

Parameter Theorem $/S_n^m$ -Theorem

For all $m, n \geq 1$ there exists a primitive recursive function S_n^m such that $\forall x \in \mathbb{N}, \bar{y} \in \mathbb{N}^m, \bar{z} \in \mathbb{N}^n$:

$$\varphi_{S_n^m(x,\bar{y})}(\bar{z}) = \varphi_x(\bar{y},\bar{z})$$

Note

 \bar{y} can be regarded as fixed parameter for the DTM $M_{S_n^m(x,\bar{y})}$ and the index $S_n^m(x,\bar{y})$ is computable.

Proof.

- Let M be the DTM that on input \bar{z} simulates the DTM M_x on input (\bar{y}, \bar{z}) .
- ► Then $\sharp(M) =: S_n^m(x, \bar{y})$ is primitive recursive from x, \bar{y} .

