Recursive functions

Peter Mayr

Computability Theory, September 29, 2023

Definition (Formulation by Kleene 1936)

The class of $(\mu$ -)**recursive** functions is the least class of finitary partial functions on \mathbb{N} that contains

- 1. contains 0, successor, all production, 2. is closed under composition, 3. is closed under primitive recu 1. contains 0, successor, all projections,

 - 3. is closed under primitive recursion,
 - 4. is closed under search (minimization) μ : if $f: \mathbb{N}^{k+1} \to \mathbb{N}$ is recursive. then

$$g\colon \mathbb{N}^k \to \mathbb{N},$$

$$x\mapsto (\mu y)\left[f(x,y)=1 \ \& \ (x,y)\in \mathrm{dom} f \ \forall t\leq y\right]$$

$$\text{win} \ \big\{\gamma\in \mathbb{N} \ \big| \ \ \text{for the dom} f \ \forall t\leq y\big\}$$
 is recursive. (Here $g(x)$ is undefined if no such y exists.)

Theorem (Turing 1936)

Every recursive function is computable.

Proof she lol.

Show that computable functions contain 0, successor, projections and are closed under composition, primitive recursion and search.

1) composition dear 2) primitive la consion: ((K,0):= @(K) 1 (4, 41): = h (x, y, f(x, y) with e. h computed by DTM To, Th Conjude (10,01) -1 (x,8) to get (15,7,1). Assure of is computed by Tig. 3) search p: Compute (cx.0), (cx,1), - until you find (cnx)=1. May nob half!