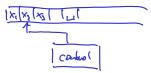
Turing machines

Peter Mayr

Computability Theory, September 8, 2023

Turing machines (TM) were proposed by Turing (1937) as computational model to formalize the intuitive notion of algorithms.



A TM consists of

- ▶ tape: consists of cells that can contain a symbol, has a leftmost end but is infinite to the right, initial part holds input, else filled with blanks □
- **control:** in one of finitely many states, contains instructions
- ▶ head: points to a cell on tape

In one step a TM

- changes state according to its current state and the symbol at the location of the head.
- writes a new symbol at the location of the head,
- moves the head one position left or right.

TM runs until it reaches its **accept** or **reject** state (may never stop).

DTM specification

We give a minimalist design (several variations are possible).

Definition

A deterministic Turing machine (DTM) M is a 7-tuple $(Q, \Sigma, \Gamma, s, t, r, \delta)$ with

- Q a finite set of states,
- Σ a finite input alphabet,
- ▶ Γ a finite **tape alphabet** with $\Box \in \Gamma, \Sigma \subseteq \Gamma \setminus \{\Box\},$ \Box
- $ightharpoonup s \in Q$ the start state,
- $ightharpoonup t \in Q$ the accept state,
- ▶ $r \in Q$ the **reject state** with $r \neq t$,
- ▶ δ : $(Q \setminus \{t, r\}) \times \Gamma \rightarrow Q \times \Gamma \times \{-1, +1\}$ the transition function.

Example

DTM with
$$Q = \{s, t, r\}, \Sigma = \{0, 1\}, \Gamma = \Sigma \cup \{\bot\}$$
 and

Viles O and wars right a lap.

Differences DTM and DFA

- ▶ DFA can be interpreted as DTM but
- DTM has infinite tape to read and write (memory!)
- ▶ DTM computation not bound by input length (DTM may not halt at all)

Example

DTM to accept $L = \{0^n 1^n : n \in \mathbb{N}\}.$

Idea: Alternatingly delete 0,1 from ends of the input string.

Accept if only blanks remain.

	δ	$ \begin{array}{c} 0 \\ (p_0, \square, +1) \\ (?_{\bullet_1} \circ j^{*}) \\ (r_{\bullet_1} \ldots j^{*}) \end{array} $	rojes 1	ecook "
slack	S	$(p_0, L, +1)$	(r, L, +1)	(t, L, L+1)
deleted V	<i>p</i> ₀	(3010141)	(fo) ()+()	(a,u,-1)
l-eurse	а	(59 . 1.)	(py 21,-1)	(τ_1,\ldots)
Lolded 1	p_1	(pe) 0, - 1)	(50 12-4)	(s, L,+1)

alòa on w	- 0011
fage	position
	0
	t
	2
4014	3
	Ų
	3
20014	
	10011 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Describing the computation of a DTM

Definition

Let $M = (Q, \Sigma, \Gamma, s, t, r, \delta)$ be a DTM.

- ▶ Enumerate the cells on the tape of M by $\mathbb{N} = \{0, 1, 2, \dots\}$.
- ▶ A **configuration** of M is a triple $(q, \alpha, k) \in Q \times \Gamma^{\mathbb{N}} \times \mathbb{N}$ of state q, tape content α and head in position k of the tape.
- ► The successor configuration of (q, α, k) for $q \in Q \setminus \{t, r\}$ and $\delta(q, \alpha(k)) = (p, a, d)$ is

$$(p, \alpha[k \rightarrow a], \max(k+d, 0)).$$

(The function $\alpha[k \to a]$ is equal to α except it maps k to a.)

Write $c \vdash_M d$ if d is the successor configuration of c. Let \vdash_M^* denote the transitive closure of \vdash_M on $Q \times \Gamma^{\mathbb{N}} \times \mathbb{N}$. Then $c \vdash_M^* d$ ("c yields d") if d is obtained from c in finitely many steps of M.

Definition

- ► M accepts $w \in \Sigma^*$ if $(s, w_{-}, 0) \vdash_M^* (t, ., .)$. M rejects w if $(s, w_{-}, 0) \vdash_M^* (r, ., .)$. M halts on w if it either accepts or rejects w; else M loops on w.
- ightharpoonup The **language** of M is

$$L(M) := \{ w \in \Sigma^* : M \text{ accepts } w \}.$$