Properties of regular languages

Peter Mayr

Computability Theory, September 6, 2023

A necessary condition for regularity

Question

Is every language L over Σ regular? How to show it is not?

```
No, uncountably many subsets of 2" ((anguages). but only comboble many regular expression.
```

Pumping Lemma

For any regular language L there exists $n \in \mathbb{N}, n \neq 0$ (the **pumping length** of L) such that $\forall w \in L, |w| \geq n, \exists x, y, z \in \Sigma^*$ such that

- ightharpoonup w = xyz
- $\rightarrow y \neq \epsilon$
- $|xy| \leq n$
- $\forall k \in \mathbb{N} : xy^k z \in L.$

Example

 $\{0^k1^k:k\in\mathbb{N}\}$ is not regular since it does not have any pumping length.

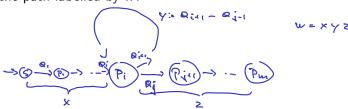
Proof.

Let L = L(M) for a DFA M with n states.

Let $w = a_1 \dots a_m \in L$ with $a_i \in \Sigma$ and $m \ge n$. Define

$$p_i := \delta^*(s, a_1 \dots a_i)$$
 for $i \leq m$.

By the pigeonhole principle $\exists 0 \leq i < j \leq n$: $p_i = p_j$. Consider the path labelled by w:



Then $\delta^*(p_i, y) = p_i$ and $xy^k z \in L$ for all $k \in \mathbb{N}$.

Myhill-Nerode Theory

For $L \subseteq \Sigma^*$ define an equivalence relation R_L on Σ^* by $x R_L y$ if $\forall w \in \Sigma^* \colon (xw, yw \in L)$ or $(xw, yw \in \Sigma^* \setminus L)$.

Idea: If L is regular and x, y are not related, then they correspond to different states $\delta^*(s, x) \neq \delta^*(s, y)$.

Note: The action of the semigroup Σ^* on Σ/R_L is welldefined.

Theorem (Myhill, Nerode 1958)

L is regular iff Σ^*/R_L is finite.

Example

 $L=\{0^k1^k\ :\ k\in\mathbb{N}\}$ is not regular since 0^k for $k\in\mathbb{N}$ are in pairwise distinct R_L -classes.

Proof.

 \Rightarrow : Let L = L(M) for a DFA M with states $\{1, \ldots, n\}$ and start state 1.

For $i \leq n$, define

$$S_i := \{ w \in \Sigma^* : \delta^*(1, w) = i \}.$$

Then S_1, \ldots, S_n refine Σ^*/\mathbb{R}_L and $|\Sigma^*/\mathbb{R}_L| \leq n$. \Leftarrow : Define a DFA M_L with

- ▶ $\Sigma^*/R_L = \{S_1, ..., S_n\} =: Q \text{ (states)}$
- $\delta(w/R_L, a) := wa/R_L$ (transition function, welldefined!)
- $ightharpoonup s := \epsilon/R_L ext{ (start state)}$
- $ightharpoonup F := \{w/R_L : w \in L\} \text{ (final states)}$

Then $L(M_L) = L$.

Corollary

 M_L above is the unique minimal DFA that accepts L.

Summary on automata and regular languages

- Converting NFA to DFA increases the number of states exponentially (in the worst case).
- Converting DFA to regular expresssions (or conversely) is exponential in the number of states (the length of the expression).
- ▶ Membership in L(M): Easy, check $w \in L(M)$ by running M with input w (takes |w| steps).
- **Emptiness of** L(M): Easy, check whether some final state is reachable from the start state (cf. graph reachability, takes n^2 steps).
- ▶ **Universality of** L(M): Every $w \in \Sigma^*$ is accepted by DFA M iff . . .