Regular languages

Peter Mayr

Computability Theory, September 1, 2023

Regular expressions

Definition

The set of **regular expresssions** over Σ is defined inductively by

- ▶ \emptyset , ϵ are regular;
- ▶ **a** is regular for every $a \in \Sigma$;
- ▶ if r_1 , r_2 are regular, then also r_1r_2 and $r_1 + r_2$;
- ightharpoonup if r is regular, then also r^* .

Example

```
(\mathbf{a} + (\mathbf{b}(\mathbf{c}^*))) is regular over \Sigma = \{a, b, c\}, usually denoted \underline{a + bc^*}. Note
```

- Regular expressions are just strings of symbols.
- Parenthesis are used when necessary for parsing.
- **Convention:** * binds stronger than ⋅, ⋅ stronger than +.

Semantics

Definition

The language $L(r) \subseteq \Sigma^*$ of a regular expression r is defined inductively by

- $\blacktriangleright L(\emptyset) := \emptyset, L(\epsilon) := \{\epsilon\}$
- $ightharpoonup L(\mathbf{a}) := \{a\} \text{ for } a \in \Sigma$
- $L(r_1r_2) := \{w_1w_2 : w_1 \in L(r_1), w_2 \in L(r_2)\}$ concatenation $L(r_1 + r_2) := L(r_1) \cup L(r_2)$ union
- $L(r^*) := L(r)^* := \underbrace{L(r)^0 \cup \underline{L(r)^1} \cup \underline{L(r)^2} \cup \dots}_{\text{(r)}} \text{ Kleene star}$ $\underbrace{\{\varepsilon\}}_{\text{(r)}} \underbrace{L(r)}_{\text{(r)}} \underbrace{L(r)^2 \cup \dots}_{\text{(r)}} \text{ Kleene star}$

Example

- ► $L(a + bc^*) = \{a\} \cup \{bc^n : n \in \mathbb{N}\}$
- regular expression for words ending in 01: (0+1)*01
- regular expression for words in which 0 and 1 alternate: $(1+\epsilon)(01)^*(0+\epsilon)$

Regular languages and automata

Definition

 $L \subseteq \Sigma^*$ is **regular** if L = L(r) for some regular expression r over Σ .

Theorem

 $L \subseteq \Sigma^*$ is regular iff L = L(M) for some DFA M with input alphabet Σ .

Proof

 \Rightarrow : Given a regular expression r, it suffices to build an ϵ -NFA M with L(M) = L(r) by induction on r:

- $ightharpoonup r = \emptyset$
- **→**(§)

 $r = \epsilon$

▶ $r = \mathbf{a}$ for $a \in \Sigma$

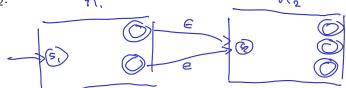
Proof ⇒: Closure under concatenation

Let $r = r_1 r_2$. Assume ϵ -NFAs M_1, M_2 accept $L(r_1), L(r_2)$, resp. Compose M_1 and M_2 into a new ϵ -NFA M for r with

- ▶ states $Q_1 \cup Q_2$ (wlog Q_1, Q_2 are disjoint)
- ▶ the starting state s_1 of M_1
- \blacktriangleright the accepting states F_2 of M_2
- ▶ $\Delta = \Delta_1 \cup \Delta_2 \cup \{\epsilon$ -transitions from F_1 to $s_2\}$.

Then $L(M) = L(r_1r_2)$.

Note: The only path from s_1 to F_2 is via an ϵ -transition from F_1 to s_2 .



Proof ⇒: Closure under union

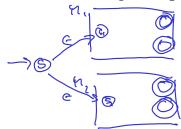
Let $r = r_1 + r_2$. Assume ϵ -NFAs M_1, M_2 accept $L(r_1), L(r_2)$, resp.

Compose M_1 and M_2 in parallel into a new ϵ -NFA M with

- ▶ states $\{s\} \cup Q_1 \cup Q_2$ (disjoint union)
- a new starting state s
- ightharpoonup accepting states $F_1 \cup F_2$
- ▶ $\Delta = \Delta_1 \cup \Delta_2 \cup \{\epsilon$ -transitions from s to s_1 and to s_2 }.

Then $L(M) = L(r_1 + r_2)$.

Note: The only path from s to either F_1 or F_2 is via an ϵ -transition from s to s_1 or to s_2 .



Proof ⇒: Closure under *

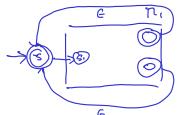
Let $r = r_1^*$. Assume ϵ -NFA M_1 accepts $L(r_1)$.

Loop M_1 to get a new ϵ -NFA M with

- ▶ states $\{s\} \cup Q_1$ (disjoint union)
- a new starting state s
- ightharpoonup new accepting states $\{s\}$
- ▶ $\Delta = \Delta_1 \cup \{\epsilon$ -transitions from s to s_1 and from F_1 to s_2 }.

Then $L(M) = L(r_1^*)$.

Note: The only path from s to s is via ϵ or via concatenations of paths from s_1 to F_1 with ϵ -transitions.



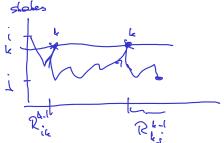
This completes the proof that every regular language is accepted by some ϵ -NFA (hence a DFA).

$\mathsf{Proof} \Leftarrow$

Given a DFA M find a regular expression r such that L(M) = L(r).

Assume M has states $\{1, \ldots, n\}$. For $i, j, k \le n$ define

$$R^k_{ij}:=ig\{w\in\Sigma^*: egin{array}{cccc} \delta^*(i,w)=j \ ext{and all intermediate states} \ ext{on the path labelled by } w \ ext{are} & \leq k \ \end{array} ig\}$$



lo Hom

Claim (*): $R_{ij}^k = L(r_{ij}^k)$ for some regular r_{ij}^k .

Proof by induction on k:

Basis k = 0: No intermediate states on the path from i to j. Let

$$A := \{a \in \Sigma : \delta(i, a) = j\}$$

▶ For $i \neq j$, let

$$r^0_{ij} := egin{cases} \emptyset & ext{if } A = \emptyset \ a_1 + \cdots + a_\ell & ext{if } A = \{a_1, \ldots, a_\ell\}, \ell \geq 1 \end{cases}$$

ightharpoonup For i = j, let

$$r_{ij}^0 := egin{cases} \epsilon & ext{if } A = \emptyset \ \epsilon + a_1 + \dots + a_\ell & ext{if } A = \{a_1, \dots, a_\ell\}, \ell \geq 1 \end{cases}$$

Induction step: Let $w \in R_{ii}^k, k \ge 1$.

- ▶ If k is not an intermediate point on the path described by w, then $w \in R_{ii}^{k-1}$.
- ▶ If w's path goes to k at least once, then

$$w \in R_{ik}^{k-1}(R_{kk}^{k-1})^*R_{kj}^{k-1}$$

Hence $R_{ij}^k = R_{ij}^{k-1} \cup R_{ik}^{k-1} (R_{kk}^{k-1})^* R_{kj}^{k-1}$.

By induction assumption, R_{ij}^k is the language of the regular expression

$$r_{ij}^{k-1} + r_{ik}^{k-1} (r_{kk}^{k-1})^* r_{kj}^{k-1}$$

and Claim (\star) is proved.

Let 1 the start state and F the final states of M. For k=n, Claim (\star) yields regular $r:=\sum_{f\in F}r_{1f}^n$ such that L(M)=L(r).

Closure properties of regular languages

Theorem

The class of regular languages over Σ is closed under complement in Σ^* , union, intersection, concatenation, and Kleene star *.

Proof.

Closure under union, concatenation, * is clear from the definition. The rest follows by constructing appropriate DFAs (HW).

Question

Is every language L over Σ regular? How to show it is not?

Pumping Lemma

For any regular language L there exists $n \in \mathbb{N}$ (pumping length of L) such that $\forall w \in L, |w| \geq n, \exists x, y, z \in \Sigma^*$ such that

- \triangleright w = xyz
- \triangleright $y \neq \epsilon$
- $|xy| \le n$
- $\forall k \in \mathbb{N}: xy^k z \in L.$

Example

 $\{0^n1^n : n \in \mathbb{N}\}$ is not regular by the Pumping Lemma.

Proof.

Let L = L(M) for a DFA M with n states.

Let $w = a_1 \dots a_m \in L$ with $a_i \in \Sigma$ and $m \ge n$. Define

$$p_i := \delta^*(s, a_1 \dots a_i)$$
 for $i \leq m$.

By the pigeonhole principle $\exists 0 \leq i < j \leq n$: $p_i = p_j$. Consider the path labelled by w:

Then
$$\delta^*(p_i, y) = p_i$$
 and $xy^k z \in L$ for all $k \in \mathbb{N}$.

Note

Having a pumping length is necessary but not sufficient to be regular.

Myhill-Nerode Theory

For $L \subseteq \Sigma^*$ define an equivalence R_L on Σ^* by

$$x R_L y$$
 if $\forall w \in \Sigma^*$: $(xw, yw \in L)$ or $(xw, xw \in \Sigma^* \setminus L)$.

Idea: The action of the semigroup Σ^* on Σ/R_L is welldefined.

Theorem (Myhill, Nerode 1958)

L is regular iff Σ^*/R_L is finite.

Proof.

 \Rightarrow : Let L = L(M) for a DFA M with states $\{1, \ldots, n\}$ and start state 1.

For $i \leq n$, define

$$S_i := \{ w \in \Sigma^* : \delta^*(1, w) = i \}.$$

Then S_1, \ldots, S_n refine Σ^*/\mathbb{R}_L and $|\Sigma^*/\mathbb{R}_L| \leq n$.

 \Leftarrow : Define a DFA M_L with

▶
$$\Sigma^*/R_L = \{S_1, ..., S_n\} =: Q \text{ (states)}$$

•
$$\delta(w/R_L, a) := wa/R_L$$
 (transition function, welldefined!)

$$ightharpoonup s := \epsilon/R_L ext{ (start state)}$$

$$ightharpoonup F := \{w/R_L : w \in L\} \text{ (final states)}$$

Then
$$L(M_L) = L$$
.

Corollary

 M_L above is the unique minimal DFA that accepts L.

Summary on automata and regular languages

- ► Converting NFA to DFA increases the number of states exponentially (in the worst case).
- Converting DFA to regular expresssions (or conversely) is exponential in the number of states (the length of the expression).
- ▶ Membership in L(M): Check $w \in L(M)$ by running M with input w (takes |w| steps).
- **Emptiness of** L(M): Check whether some final state is reachable from the start state (cf. graph reachability, takes n^2 steps).