# Deterministic and nondeterministic automata

Peter Mayr

Computability Theory, August 30, 2023

## Recall

## Definition

A deterministic finite automaton (DFA) is a 5-tuple

 $M = (Q, \Sigma, \delta, s, F)$  with

- Q a finite set (states),
- $\triangleright$   $\Sigma$  a finite set (**input alphabet**),
- ▶  $\delta: Q \times \Sigma \rightarrow Q$  the transition function,
- $ightharpoonup s \in Q$  the start state,
- ▶  $F \subseteq Q$  the set of **final/accepting states**.

*M* accepts  $w \in \Sigma^*$  if  $\delta^*(s, w) \in F$  for the extension  $\delta^*$  of  $\delta$  to  $\Sigma^*$ .

$$L(M) := \{ w \in \Sigma^* : M \text{ accepts } w \}$$

is the **language of** M.



# Example

Is there a DFA  $M_3$  such that  $L(M_3) = \{w \in \{0,1\}^* : 001 \text{ is a substring of } w\}$ ?

I dea: scan w for 00!

Shobes shows ... no part of  $\infty$  ( see yel ) shakes require  $\alpha_0 = 1$  (who saw of  $\alpha_0 = 1$ ) shakes require  $\alpha_0 = 1$  (who saw of  $\alpha_0 = 1$ ) we not  $\alpha_0 = 1$  ( $\alpha_0 = 1$ )  $\alpha_0 = 1$ 

## Nondeterministic finite automata

- ▶ **Deterministic:** current state and input symbol uniquely determine next state
- ▶ Nondeterministic: several choices for next state
  - Interpretation: all possible transitions are done in parallel/the 'right' one is guessed.
  - Not a realistic model of computation but a useful theoretical device for its analysis.

## Definition

A nondeterministic finite automaton with  $\epsilon$ -transitions ( $\epsilon$ -NFA) is a 5-tuple ( $Q, \Sigma, \underline{\Delta}, s, F$ ) like a DFA except that

$$\Delta: Q \times (\Sigma \cup \{\epsilon\}) \rightarrow P(Q)$$
  $(P(Q) \dots \text{power set of } Q)$ 

- ▶ Recall  $\epsilon$  is the empty word, not an element in  $\Sigma$ .
- ▶  $\epsilon$ -transitions allow the NFA to change from a state q to any state in  $\Delta(q, \epsilon)$  without input.
- ▶ Wlog, the sets  $T := \Delta(q, a)$  for any  $a \in \Sigma \cup \{\epsilon\}$  are  $\epsilon$ -closed (i.e. if  $\underline{t} \in T$ , then also  $\Delta(t, \epsilon) \subseteq T$ ).

$$\Delta(o,t) = \phi$$

$$\Delta(a,e) = \{a,b,c\}$$

branch processes flushoh input headres final state c accepting Grand

#### Definition

For an  $\epsilon$ -NFA  $N = (Q, \Sigma, \Delta, s, F)$  the **extended transition** function

$$\Delta^*\colon Q\times \Sigma^*\to P(Q)$$

is defined inductively for  $q \in Q, w \in \Sigma^*, a \in \Sigma$  by

$$egin{array}{ll} \Delta^*(q,\epsilon) &:= \Delta(q,\epsilon) \ \Delta^*(q,\mathit{wa}) &:= igcup_{r \in \Delta^*(q,\mathit{w})} \Delta(r,\mathit{a}) \end{array}$$

assuming all  $\Delta(q,\epsilon)$  and  $\Delta(r,a)$  are  $\epsilon$ -closed.

- ▶ *N* accepts w if  $\Delta^*(s, w) \cap F \neq \emptyset$  (i.e. *N* accepts w iff  $\exists$  some path from s to a state in F that is labelled by w).
- N rejects w otherwise.

The **language** of N is

$$L(N) := \{ w \in \Sigma^* : M \text{ accepts } w \}.$$



#### Note

- Every DFA can be considered as  $\epsilon$ -NFA with  $\Delta(q, a) := \{\delta(q, a)\}$  (singleton) and  $\Delta(q, \epsilon) := \emptyset$ .
- Every language accepted by a DFA is also accepted by some  $\epsilon$ -NFA. What about the converse?

# Theorem (Subset construction (Rabin, Scott 1959))

Let  $N = (Q, \Sigma, \Delta, s, F)$  be an  $\epsilon$ -NFA with all  $\Delta(q, a)$   $\epsilon$ -closed. Let  $M = (Q', \Sigma, \delta, s', F')$  be the DFA with

- ightharpoonup Q' := P(Q),
- δ(R, a) :=  $\bigcup_{a \in R} \Delta(q, a)$  for  $R \subseteq Q$ ,  $a \in \Sigma$ ,
- $ightharpoonup s' := \Delta(s, \epsilon),$

Then L(N) = L(M).

#### Proof

First show for all  $w \in \Sigma^*$  that

$$\delta^*(s',w) = \Delta^*(s,w) \tag{\dagger}$$

by induction on |w|.

Base case: For  $w = \epsilon$ ,

$$\delta^*(s',\epsilon) = s' = \Delta(s,\epsilon) = \Delta^*(s,\epsilon).$$

**Induction hypothesis:** (†) holds for  $w \in \Sigma^*$  of length n. Let  $a \in \Sigma$ . Then

$$\delta^{*}(s', wa) = \delta(\delta^{*}(s', w), a)$$

$$= \delta(\Delta^{*}(s, w), a)$$

$$= \bigcup_{q \in \Delta^{*}(s, w)} \Delta(q, a)$$

$$= \Delta^{*}(s, wa)$$

by definition of  $\delta^*$  by induction hypothesis by definition of  $\delta$  by definition of  $\Delta^*$ 

Hence (†) is proved.

## Proof, continued

Note: N accepts w iff  $\Delta^*(s,w) \cap F \neq \emptyset$ iff  $\delta^*(s',w) \in F'$  by  $(\dagger)$  and the definition of F'iff M accepts w.

## Note

The subset construction translates an NFA with |Q| states into a DFA with  $2^{|Q|}$  states. Often fewer suffice.

## Example, continued

Recall t  $\epsilon$ -NFA N with 3 states,  $L(N) = \{0^{\ell}1^{m}2^{n} : \ell, m, n \in \mathbb{N}\}$ . There is a DFA M with L(M) = L(N) and

| $\delta$     | 0           | 1                       | 2            |
|--------------|-------------|-------------------------|--------------|
| $\{a,b,c\}$  | $\{a,b,c\}$ | { <i>b</i> , <i>c</i> } | { <i>c</i> } |
| $\{b,c\}$    | Ø           | $\{b,c\}$               | { <i>c</i> } |
| { <i>c</i> } | Ø           | Ø                       | { <i>c</i> } |
| Ø            | Ø           | Ø                       | Ø            |

Since the other subsets cannot be reached from the starting state  $\{a, b, c\}$ , they can be omitted.