# Intro to computability

Peter Mayr

Computability Theory, September 28, 2023

# What can a computer do in principle?

# Hilbert's Tenth Problem (1900)

Given a polynomial  $p(x_1, ..., x_n)$  with integer coefficients, decide whether it has an integer zero.

# Matiyasevich (1970)

No such algorithm exists. Hilbert's Tenth Problem is undecidable.

## Other undecidable problems

- Hilbert's Entscheidungsproblem for first order logic (Church, Turing 1936)
- 2. Halting Problem for Turing machines
- 3. Word problem for (semi)groups

# What is efficiently computable?

- ► The computational complexity of an algorithm is usually measured in the time or space (memory) it requires depending on the size of the input.
- ▶ This depends on the specific computational model.

# Topics of this course

- Models of computation
  - automata, regular languages
  - Turing machines
  - recursive functions
- Undecidability
  - ► Halting problem
  - Word problem for semigroups
- Degrees of undecidability
  - Turing reductions
  - arithmetical hierarchy
  - Post's problem for Turing degrees
- Computational complexity
  - time and space complexity
  - P vs NP, NP-completeness
  - L, NL, PSPACE

### Some classic textbooks we will reference

### On computational models:

➤ Sipser. Introduction to the theory of computation. Thomson Course Technology, Boston, 2nd edition, 2006.

### On computability:

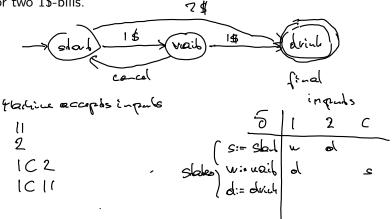
Soare, Robert I. Turing computability: theory and applications. Springer, Berlin, 2016.

### On computational complexity:

Arora, Sanjeev; Barak, Boaz. Computational complexity: a modern approach. Cambridge University Press, 2007 1. Automata and regular languages

## Example

Model a vending machine  $M_1$  that delivers a drink for one 2\$-coin or two 1\$-bills.



## Automata

### **Definition**

A deterministic finite automaton (DFA) is a 5-tuple  $(Q, \Sigma, \delta, s, F)$  with

- Q a finite set (states),
- Σ a finite set (input alphabet),
- ▶  $\delta: Q \times \Sigma \rightarrow Q$  the transition function,
- $ightharpoonup s \in Q$  the start state,
- ▶  $F \subseteq Q$  the set of **final/accepting states**.

A DFA starts in state s and reads some input string  $(a_1, \ldots, a_n)$  for  $a_i \in \Sigma$ . If it reads  $a_i$  in state  $q_i$ , it changes to state  $\delta(q_i, a_i)$ .

Example 
$$M_2 = (Q, \Sigma, \delta, s, \{s\}) \text{ with } Q = \{s, t\}, \Sigma = \{0, 1\}.$$
 
$$\frac{\delta \mid 0 \mid 1}{s \mid s \mid t}$$



Every mad nibb en even number of la duives to 2 do a final state

# Languages

#### **Definition**

- $\Sigma^* := \bigcup_{n \in \mathbb{N}} \Sigma^n$  is the set of all **words** over Σ. |w| is the **length** of a word.  $\epsilon \in \Sigma^0$  is the **empty word** (length 0).
- $\blacktriangleright$  *uv* is the **concatenation** of words *u*, *v*.
- ▶  $L \subseteq \Sigma^*$  is a **language**.

### **Definition**

For a DFA  $(Q, \Sigma, \delta, s, F)$  the **extended transition function** 

$$\delta^* \colon Q \times \Sigma^* \to Q$$

is defined inductively for  $q \in Q, w \in \Sigma^*, a \in \Sigma$  by

$$\delta^*(q, \epsilon) := q$$
  
 $\delta^*(q, wa) := \delta(\delta^*(q, w), a)$ 

#### Definition

Let  $M = (Q, \Sigma, \delta, s, F)$  be a DFA, let  $w \in \Sigma^*$ .

- ▶ M accepts w if  $\delta(s, w) \in F$ .
- M rejects w otherwise.

The **language of** M is

$$L(M) := \{ w \in \Sigma^* : M \text{ accepts } w \}.$$

# Example (continued)

$$L(M_2) = \{w \in \{0,1\}^* : w \text{ contains an even number of 1s } \}$$

## Example

Is there a DFA  $M_3$  such that  $L(M_3) = \{w \in \{0,1\}^* : 001 \text{ is a substring of } w\}$ ?

## Nondeterministic finite automata

- Deterministic: current state and input symbol uniquely determine next state
- ▶ Nondeterministic: several choices for next state
  - Interpretation: all possible transitions are done in parallel/the 'right' one is guessed.
  - Not a realistic model of computation but a useful theoretical device for its analysis.

#### Definition

A nondeterministic finite automaton with  $\epsilon$ -transitions ( $\epsilon$ -NFA) is a 5-tuple ( $Q, \Sigma, \Delta, s, F$ ) like a DFA except that

$$\Delta \colon Q \times \Sigma \cup \{\epsilon\} \to P(Q)$$
  $(P(Q) \dots \text{power set of } Q)$ 

- ▶ Recall  $\epsilon$  is the empty word, not an element in  $\Sigma$ .
- ▶  $\epsilon$ -transitions allow the NFA to change from a state q to any state in  $\Delta(q, \epsilon)$  without input.
- ▶ Wlog, the sets  $T := \Delta(q, a)$  for any  $a \in \Sigma \cup \{\epsilon\}$  are  $\epsilon$ -closed (i.e. if  $t \in T$ , then also  $\Delta(t, \epsilon) \subseteq T$ ).

# Example

#### Definition

For an  $\epsilon$ -NFA  $N = (Q, \Sigma, \Delta, s, F)$  the **extended transition** function

$$\Delta^* \colon Q \times \Sigma^* \to P(Q)$$

is defined inductively for  $q \in Q, w \in \Sigma^*, a \in \Sigma$  by

$$\Delta^*(q, \epsilon) := \Delta(q, \epsilon)$$
  
 $\Delta^*(q, wa) := \bigcup_{r \in \Delta^*(q, w)} \Delta(r, a)$ 

assuming all  $\Delta(q, \epsilon)$  and  $\Delta(r, a)$  are  $\epsilon$ -closed.

- ▶ *N* accepts w if  $\Delta^*(s, w) \cap F \neq \emptyset$ (i.e. *N* accepts w iff  $\exists$  some path from s to a state in F that is labelled by w).
- N rejects w otherwise.

The **language** of N is

$$L(N) := \{ w \in \Sigma^* : M \text{ accepts } w \}.$$



#### Note

- Every DFA can be considered as  $\epsilon$ -NFA with  $\Delta(q, a) := \{\delta(q, a)\}$  (singleton) and  $\Delta(q, \epsilon) := \emptyset$ .
- Every language accepted by a DFA is also accepted by some  $\epsilon$ -NFA. What about the converse?

# Theorem (Subset construction (Rabin, Scott 1959))

Let  $N = (Q, \Sigma, \Delta, s, F)$  be an  $\epsilon$ -NFA with all  $\Delta(q, a)$   $\epsilon$ -closed. Let  $M = (Q', \Sigma, \delta, s', F')$  be the DFA with

- ightharpoonup Q' := P(Q),
- δ(R, a) :=  $\bigcup_{a \in R} \Delta(q, a)$  for  $R \subseteq Q$ ,  $a \in \Sigma$ ,
- $ightharpoonup s' := \Delta(s, \epsilon),$

Then L(N) = L(M).

#### Proof

First show for all  $w \in \Sigma^*$  that

$$\delta^*(s',w) = \Delta^*(s,w) \tag{\dagger}$$

by induction on |w|.

Base case: For  $w = \epsilon$ ,

$$\delta^*(s',\epsilon) = s' = \Delta(s,\epsilon) = \Delta^*(s,\epsilon).$$

**Induction hypothesis:** (†) holds for  $w \in \Sigma^*$  of length n. Let  $a \in \Sigma$ . Then

$$\delta^*(s', wa) = \delta(\delta^*(s', w), a)$$

$$= \delta(\Delta^*(s, w), a)$$

$$= \bigcup_{q \in \Delta^*(s, w)} \Delta(q, a)$$

$$= \Delta^*(s, wa)$$

by definition of  $\delta^*$  by induction hypothesis by definition of  $\delta$  by definition of  $\Delta^*$ 

Hence (†) is proved.

### Proof, continued

Note: N accepts w iff  $\Delta^*(s,w) \cap F \neq \emptyset$ iff  $\delta^*(s',w) \in F'$  by  $(\dagger)$  and the definition of F'iff M accepts w.

#### Note

The subset construction translates an NFA with |Q| states into a DFA with  $2^{|Q|}$  states. Often fewer suffice.

## Example, continued

Recall t  $\epsilon$ -NFA N with 3 states,  $L(N) = \{0^{\ell}1^{m}2^{n} : \ell, m, n \in \mathbb{N}\}$ . There is a DFA M with L(M) = L(N) and

| $\delta$     | 0           | 1                       | 2            |
|--------------|-------------|-------------------------|--------------|
| $\{a,b,c\}$  | $\{a,b,c\}$ | { <i>b</i> , <i>c</i> } | { <i>c</i> } |
| $\{b,c\}$    | Ø           | $\{b,c\}$               | { <i>c</i> } |
| { <i>c</i> } | Ø           | Ø                       | { <i>c</i> } |
| Ø            | Ø           | Ø                       | Ø            |

Since the other subsets cannot be reached from the starting state  $\{a, b, c\}$ , they can be omitted.