Math 6010 Fall 15

MATH 6010: Computability Theory (Fall 2015)

Syllabus

Schedule

  1. 08/24: deterministic finite automata, languages
  2. 08/26: nondeterministic finite automata, subset construction
  3. 08/28: regular expressions, regular languages
  4. 08/31: limits of automata, pumping lemma
  5. 09/02: Turing machines
  6. 09/04: configurations, nondeterministic Turing machines
  7. 09/09: recursive and recursively enumerable languages
  8. 09/11: Church-Turing thesis, lambda-calculus
  9. 09/14: halting problem
  10. 09/16: many-one reductions
  11. 09/18: Rice's Theorem
  12. 09/21: word problem for semigroups
  13. 09/23: primitive recursive functions and predicates
  14. 09/25: Ackermann function, mu-recursion
  15. 09/28: Arithmetization via prime power coding, Enumeration Theorem for computable functions
  16. 09/30: Kleene's Normal Form Theorem, s-m-n Theorem
  17. 10/02: Arithmetical Hierarchy
  18. 10/05: Normal Form Theorem for recursively enumerable predicates, universal predicates
  19. 10/07: complete sets
  20. 10/09: creative and simple sets
  21. 10/12: nonrecursive, non m-complete, r.e. sets
  22. 10/14: finite approximations
  23. 10/16: Friedberg Splitting Theorem
  24. 10/19: oracles, relativization
  25. 10/21: Turing degrees
  26. 10/23: Turing jump
  27. 10/26: finite approximations, Post's Theorem
  28. 10/28: incomparable degrees
  29. 10/30: minimal pairs
  30. 11/02: properties of the jump
  31. 11/04: Post's Problem
  32. 11/06: Friedberg-Muchnik Theorem
  33. 11/09: time complexity, O
  34. 11/11: P, NP, polytime verifiers
  35. 11/13: space complexity
  36. 11/16: connecting space and time, reachability, configuration graph
  37. 11/18: Savitch's Theorem
  38. 11/20: Space Hierarchy Theorem
  39. 11/30: Space Hierarchy Theorem
  40. 12/02: Time Hierarchy Theorem

Assignments

  1. due 09/02
  2. due 09/09
  3. due 09/16
  4. due 09/23
  5. due 09/30
  6. due 10/07
  7. due 10/14
  8. due 10/21
  9. due 10/28
  10. due 11/18
  11. due 12/09

Reading

The following books are on reserve in Gemmill library.
  1. Hopcroft, John; Motwani, Rajeev; Ullman, Jeffrey. Introduction to automata theory, languages, and computation. Pearson, 3rd edition, 2006.
  2. Odifreddi, Piergiorgio. Classical recursion theory. North-Holland Publishing Co., Amsterdam, 1989.
  3. Papadimitriou, Christos. Computational complexity. Addison-Wesley, 1994.
  4. Sipser, Michael. Introduction to the theory of computation. Thomson Course Technology, Boston, 2nd edition, 2006.
  5. Soare, Robert I. Recursively enumerable sets and degrees. Springer-Verlag, Berlin, 1987.
  6. Lecture notes by Stephen G. Simpson (PSU, 2005)