

15. Homogeneous structures

Goal

Construct countable structures as limit of their finite substructures
by **Fraïssé amalgamation**.

The age of a structure

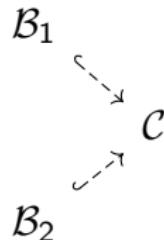
The **age** of an \mathcal{L} -structure \mathcal{A} is the class $\text{Age}(\mathcal{A})$ of all finitely generated \mathcal{L} -structures that embed into \mathcal{A} .

Example

- ▶ $\text{Age}(\mathbb{Q}, <)$
- ▶ Age of the \mathbb{Q} -vector space of countable dimension

If K is the age of some structure, then $K \neq \emptyset$ and K satisfies the

1. **Hereditary property (HP):** If $\mathcal{B} \in K$ and $\mathcal{C} \leq \mathcal{B}$ is finitely generated, then $\mathcal{C} \in K$.
2. **Joint embedding property (JEP):**
For all $\mathcal{B}_1, \mathcal{B}_2 \in K$ there exists $\mathcal{C} \in K$ that embeds both \mathcal{B}_1 and \mathcal{B}_2 .



Lemma (Fraïssé)

For a non-empty class K of finitely generated \mathcal{L} -structures TFAE:

1. K is the age of a finite or countable \mathcal{L} -structure;
2. K has the HP and JEP, is closed under isomorphisms and contains at most countably many structures up to isomorphism.

Proof.

1. \Rightarrow 2. Easy.

2. \Rightarrow 1. Enumerate representatives $\mathcal{A}_0, \mathcal{A}_1, \dots$ for the isomorphism classes in K .

Define a chain $\mathcal{B}_0 \hookrightarrow \mathcal{B}_1 \hookrightarrow \dots$ as follows:

- ▶ $\mathcal{B}_0 := \mathcal{A}_0$
- ▶ Given \mathcal{B}_i , find $\mathcal{B}_{i+1} \in K$ such that $\mathcal{B}_i \hookrightarrow \mathcal{B}_{i+1}$ and $\mathcal{A}_{i+1} \hookrightarrow \mathcal{B}_{i+1}$ by the JEP.

Set $\mathcal{B} := \lim_{i \in \mathbb{N}} \mathcal{B}_i$.

- ▶ \mathcal{B} is at most countable as the union of countably many at most countable structures.
- ▶ Every structure in K embeds into \mathcal{B} by construction.
- ▶ For any finitely generated substructure \mathcal{A} of \mathcal{B} , the finitely many generators lie in some \mathcal{B}_i . So $\mathcal{A} \hookrightarrow \mathcal{B}_i$ and $\mathcal{A} \in K$ by the HP.
- ▶ Thus $\text{Age}(\mathcal{B}) = K$. □

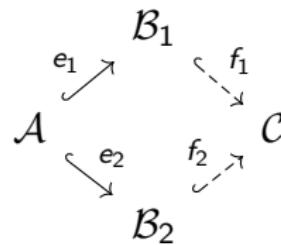
Amalgamation

Note: all infinite linear orders have the same age (the class of finite linear orders).

In which sense do fin linear orders tend to $(\mathbb{Q}, <)$ instead of $(\mathbb{Z}, <)$?

A class K of \mathcal{L} -structures has the **amalgamation property (AP)** if for all $\mathcal{A}, \mathcal{B}_1, \mathcal{B}_2 \in K$ and embeddings $e_1: \mathcal{A} \hookrightarrow \mathcal{B}_1$, $e_2: \mathcal{A} \hookrightarrow \mathcal{B}_2$ there exist $\mathcal{C} \in K$ and embeddings $f_1: \mathcal{B}_1 \hookrightarrow \mathcal{C}$, $f_2: \mathcal{B}_2 \hookrightarrow \mathcal{C}$ such that

$$f_1 e_1 = f_2 e_2.$$



Example

The following classes have AP: finite linear orders, finite graphs, finite dimensional F -vector spaces.

Homogeneity

A structure \mathcal{A} is **(ultra)homogeneous** if every isomorphism between finitely generated substructures of \mathcal{A} extends to an automorphism of \mathcal{A} .

Homogeneity can often be proved via the back-and-forth method.

Example

$(\mathbb{Q}, <)$ is homogeneous.

- ▶ Let f_0 be any isomorphism between two finite substructures.
- ▶ Replacing the empty function by f_0 in the back-and-forth argument for the \aleph_0 -categoricity of DLO, f_0 can be extended to an automorphism of $(\mathbb{Q}, <)$.

$(\mathbb{Z}, <)$ is not homogeneous (Why?).

Example

Vector spaces are homogeneous (assuming AC).

Lemma

The age of any homogeneous structure \mathcal{B} has the AP.

Proof.

1. Let $\mathcal{A}, \mathcal{B}_1, \mathcal{B}_2 \in \text{Age}(\mathcal{B})$ with embeddings $e_i: \mathcal{A} \hookrightarrow \mathcal{B}_i$ for $i = 1, 2$.
2. Let $g_i: \mathcal{B}_i \hookrightarrow \mathcal{B}$.
3. $g_2 e_2 e_1^{-1} g_1^{-1}$ restricts to an isomorphism $g_1 e_1(\mathcal{A}) \rightarrow g_1 e_1(\mathcal{A})$, which extends to an automorphism a of \mathcal{B} by homogeneity.
4. Let $\mathcal{C} \leq \mathcal{B}$ be generated by $ag_1(\mathcal{B}_1) \cup g_2(\mathcal{B}_2)$.
Then \mathcal{C} is finitely generated and hence in $\text{Age}(\mathcal{B})$.
5. $ag_1: \mathcal{B}_1 \rightarrow \mathcal{B}$ and $g_2: \mathcal{B}_2 \rightarrow \mathcal{B}$ are embeddings into \mathcal{C} such that

$$ag_1 e_1(x) = g_2 e_2(x) \text{ for all } x \in \mathcal{A}.$$

6. Hence $\text{Age}(\mathcal{A})$ has the AP.

□

Example

Since $(\mathbb{Q}, <)$ is homogeneous, its age (the class of all finite linear orders) has the AP.