

13. Algebraically closed fields

Comparing ACF_0 and ACF_p for p prime

Corollary (Transfer Principle for algebraically closed fields)

For a sentence ϕ in the language of rings TFAE:

1. $\mathbb{C} \models \phi$.
2. Every algebraically closed field of characteristic 0 satisfies ϕ .
3. Some algebraically closed field of characteristic 0 satisfies ϕ .
4. For every $m \in \mathbb{N}$ there exists a prime $p > m$ such that some alg closed field of char p satisfies ϕ .
5. There exists $m \in \mathbb{N}$ such that for all primes $p > m$ all alg closed fields of char p satisfy ϕ .

Proof.

1. iff 2. iff 3. is completeness of ACF_0 .
5. \Rightarrow 4. is clear.

2. \Rightarrow 5.

- ▶ Assume $\text{ACF}_0 \models \phi$.
- ▶ By the Compactness Theorem, we have a finite $\Delta \subseteq \text{ACF}_0$ such that $\Delta \models \phi$.
- ▶ Since Δ contains only finitely many sentences $\underbrace{1 + \cdots + 1}_n \neq 0$, for p large enough, $\text{ACF}_p \models \Delta$.
- ▶ Hence $\text{ACF}_p \models \phi$ for all large enough p .

4. \Rightarrow 2. by contraposition.

- ▶ Assume $\text{ACF}_0 \not\models \phi$, i.e., $\text{ACF}_0 \models \neg\phi$ by completeness.
- ▶ As above, $\text{ACF}_p \models \neg\phi$ for all large enough p , i.e., 4. does not hold.

Theorem (Ax-Grothendieck, special case)

Every injective map

$$\mathbb{C}^n \rightarrow \mathbb{C}^n, \bar{x} \mapsto (f_1(\bar{x}), \dots, f_n(\bar{x})),$$

for polynomials f_1, \dots, f_n is bijective.

(\mathbb{C}^n can be replaced by an algebraic variety over an alg closed field.)

Proof sketch.

1. For F a finite field instead of \mathbb{C} , the statement is clear.
2. Since the algebraic closure \overline{F}_p of the p -element field F_p is a union of finite fields, the statement follows for \overline{F}_p .
3. There is a sentence $\phi_{n,d}$ such that for any field F we have $F \models \phi_{n,d}$ iff every injective polynomial function on F^n whose components f_i have degree $\leq d$ is surjective.
4. Since $\overline{F}_p \models \phi_{n,d}$ for all p , $\mathbb{C} \models \phi_{n,d}$ by the previous Corollary.

