

12. κ -categorical structures

Categoricity

By the Löwenheim-Skolem Theorem,

no theory with infinite model can define this model up to isomorphism.

The best we can hope for is a unique model for a given cardinality.

Let κ be an infinite cardinal. A theory is **κ -categorical** if it has exactly one model of cardinality κ up to isomorphism.

Example

1. The theory of F -vector spaces is κ -categorical for all $\kappa > |F|$.
2. The theory of torsion-free divisible Abelian groups is κ -categorical for all $\kappa > \aleph_0$.
3. The theory of algebraically closed fields ACF_p of characteristic p is κ -categorical for all $\kappa > \aleph_0$.

Theorem (Vaught's test)

Let T be an \mathcal{L} -theory that is

- ▶ satisfiable,
- ▶ κ -categorical for some infinite $\kappa \geq |\mathcal{L}|$ and
- ▶ has no finite models.

Then T is complete.

Example

1. The following are complete: the theory of **infinite** vector spaces over a fixed field F , ACF_p
2. The theory of all F -vector spaces is not complete (Why?)

Outlook

- ▶ κ -categoricity is a very strong property of (complete) theories.
- ▶ \aleph_0 -categorical theories have very special properties distinct from κ -categorical theories for uncountable κ .

Morley's Categoricity Theorem

If a complete theory T in a countable language is κ -categorical for some uncountable κ , then T is κ -categorical for all uncountable κ .

Hence, if a complete theory in a countable language with an infinite model is κ -categorical, then either for

- ▶ all infinite κ ,
- ▶ all uncountable κ ,
- ▶ just $\kappa = \aleph_0$.