

11. Löwenheim-Skolem Theorem

Limits of chains of structures

As a consequence of the Compactness Theorem,
a first order theory cannot specify the cardinality of an infinite model.
More precisely:

Theorem (Löwenheim-Skolem)

Let \mathcal{A} be an infinite \mathcal{L} -structure, $S \subseteq A$ and κ an infinite cardinal.

- ▶ (Downwards) If $\max(|S|, |\mathcal{L}|) \leq \kappa \leq |A|$, then \mathcal{A} has an elementary substructure containing S of cardinality κ .
- ▶ (Upwards) If $\max(|A|, |\mathcal{L}|) \leq \kappa$, then \mathcal{A} has an elementary extension of cardinality κ .

Proof.

Downwards: Choose $S \subseteq S' \subseteq A$ with $|S'| = \kappa$ and apply the Corollary of the Tarski-Vaught test.

Upwards: First construct an elementary extension \mathcal{C} of \mathcal{A} such that $|\mathcal{C}| \geq \kappa$.

1. Let D be a set of new constants, $|D| = \kappa$.
2. Since \mathcal{A} is infinite,

$$T := \text{Th}(\mathcal{A}_A) \cup \{\neg(c = d) \mid c, d \in D, c \neq d\}$$

is finitely satisfiable (even by expansions of \mathcal{A}_A).

3. By the Compactness Theorem, T has a model \mathcal{C}'_A of size $\geq \kappa$.
4. Its \mathcal{L} -reduct \mathcal{C} is an elementary extension of \mathcal{A} .

Finally apply the downward part to \mathcal{C} and $S = A$ to get an elementary substructure \mathcal{B} of \mathcal{C} with $|\mathcal{B}| = \kappa$. Then \mathcal{B} is an elementary extension of \mathcal{A} (HW). □

Corollary

If an \mathcal{L} -theory has some infinite model, then it has a model of every infinite cardinality $\geq |\mathcal{L}|$.