

10. Elementary substructures

Limits of chains of structures

1. Let I be linearly ordered by \leq .
2. A sequence of \mathcal{L} -structures $(\mathcal{A}_i)_{i \in I}$ is a **chain** if \mathcal{A}_i is a substructure of \mathcal{A}_j for all $i \leq j$.
3. The **union** of a chain $(\mathcal{A}_i)_{i \in I}$ is the \mathcal{L} -structure $\mathcal{B} = \lim_{i \in I} \mathcal{A}_i$ such that
 - ▶ $B := \bigcup_{i \in I} \mathcal{A}_i$,
 - ▶ $R^{\mathcal{B}} := \bigcup_{i \in I} R^{\mathcal{A}_i}$ for any relation symbol $R \in \mathcal{L}$,
 - ▶ $c^{\mathcal{B}} := c^{\mathcal{A}_i}$ for some (hence all) $i \in I$ for any constant $c \in \mathcal{L}$,
 - ▶ $f^{\mathcal{B}}(\bar{a}) := f^{\mathcal{A}_i}(\bar{a})$ if \bar{a} is a tuple in \mathcal{A}_i for some $i \in I$ for any function symbol $f \in \mathcal{L}$.

Example

For $n \in \mathbb{N}$ let

$$\mathcal{A}_n := (\{-n, -n+1, \dots\}, \leq).$$

1. $\lim_{n \in \mathbb{N}} \mathcal{A}_n = (\mathbb{Z}, \leq)$
2. $\text{Th}(\mathcal{A}_n) = \text{Th}(\mathcal{A}_0)$ since $\mathcal{A}_n \cong \mathcal{A}_0$.
3. $\text{Th}(\mathcal{A}_n) \neq \text{Th}(\lim_{n \in \mathbb{N}} \mathcal{A}_n)$ because \mathcal{A}_n has a smallest element but \mathbb{Z} not. $\exists x \forall y \ x \leq y$

Elementary embeddings

Recall that \mathcal{L} -embeddings preserve and reflect relations, functions, constants in \mathcal{L} .

An \mathcal{L} -embedding $h: \mathcal{A} \rightarrow \mathcal{B}$ is an **elementary embedding** if

$$\mathcal{A} \models \phi(a_1, \dots, a_n) \text{ iff } \mathcal{B} \models \phi(h(a_1), \dots, h(a_n))$$

for all \mathcal{L} -formulas ϕ and $a_1, \dots, a_n \in A$.

A substructure \mathcal{A} of \mathcal{B} is an **elementary substructure** (written $\mathcal{A} \prec \mathcal{B}$) if the inclusion map is elementary. Then \mathcal{B} is an **elementary extension** of \mathcal{A} .

For $S \subseteq A$, let \mathcal{A}_S be the expansion of \mathcal{A} by a constant for every $a \in S$.

Then $\mathcal{A} \prec \mathcal{B}$ iff \mathcal{A} is a substructure of \mathcal{B} and $\text{Th}(\mathcal{A}_A) = \text{Th}(\mathcal{B}_A)$.

Example, continued

$\mathcal{A}_n \not\prec \mathcal{A}_{n+1}$ because $\mathcal{A}_{n+1} \models \exists x \ x < -n$ but $\mathcal{A}_n \not\models \exists x \ x < -n$

Elementary chains

A chain $(\mathcal{A}_i)_{i \in I}$ is an **elementary chain** if $\mathcal{A}_i \prec \mathcal{A}_j$ for all $i < j$.

Tarski's Chain Lemma

Let $(\mathcal{A}_i)_{i \in I}$ be an elementary chain. Then $\mathcal{A}_i \prec \lim_{i \in I} \mathcal{A}_i$ for all $i \in I$.

Proof.

Let $\mathcal{B} := \lim_{i \in I} \mathcal{A}_i$. Show for any \mathcal{L} -formula $\phi(x_1, \dots, x_n)$, $i \in I$, $\bar{a} \in A_i^n$,

$$\mathcal{B} \models \phi(\bar{a}) \quad \text{iff} \quad \mathcal{A}_i \models \phi(\bar{a})$$

by induction on ϕ .

Base cases

- ▶ For atomic formulas $s = t$, use induction on terms to show $t^{\mathcal{B}}(\bar{a}) = t^{\mathcal{A}_i}(\bar{a})$.

- ▶ For $R \in \mathcal{L}$

$$\mathcal{B} \models R(\bar{a}) \text{ iff } \bar{a} \in R^{\mathcal{B}} \text{ iff } \bar{a} \in R^{\mathcal{A}_i} \text{ iff } \mathcal{A}_i \models R(\bar{a}).$$

Induction steps

- ▶ Straightforward for formulas $\neg\psi$ and $\phi \wedge \psi$.
- ▶ For ϕ of the form $\exists y \psi(\bar{x}, y)$

$$\mathcal{B} \models \exists y \psi(\bar{a}, y)$$

iff $\mathcal{B} \models \psi(\bar{a}, b)$ for some $b \in B$

iff $\mathcal{A}_j \models \psi(\bar{a}, b)$ for some $b \in A_j$ for some $j > i$ by IA

iff $\mathcal{A}_j \models \exists y \psi(\bar{a}, y)$ for some $j > i$

iff $\mathcal{A}_i \models \exists y \psi(\bar{a}, y)$ since $\mathcal{A}_i \prec \mathcal{A}_j$.

Tarski-Vaught test for elementary substructures

An \mathcal{L} -formula $\phi(x)$ is **satisfiable** in an \mathcal{L} -structure \mathcal{A} if there exists $a \in A$ such that $\mathcal{A} \models \phi(a)$. Then we say a satisfies $\phi(x)$.

Lemma (Tarski-Vaught test)

Let \mathcal{B} be an \mathcal{L} -structure. Then $A \subseteq B$ is the universe of an elementary substructure of \mathcal{B} iff every $\mathcal{L} \cup A$ -formula $\phi(x)$ which is satisfiable in \mathcal{B}_A can be satisfied by an element of A .

Proof.

\Rightarrow : If $\mathcal{A} \prec \mathcal{B}$ and $\mathcal{B}_A \models \exists x \phi(x)$, then $\mathcal{A} \models \exists x \phi(x)$, i.e., $\mathcal{B} \models \phi(a)$ for some $a \in A$.

\Leftarrow : Assume the rhs holds.

Claim 1: A is universe of a substructure \mathcal{A} .

For $f \in \mathcal{L}$ and $a_1, \dots, a_n \in A$, note that $x = f(a_1, \dots, a_n)$ is satisfiable in \mathcal{B}_A . So there is $b \in A$ such that $\mathcal{B}_A \models b = f(a_1, \dots, a_n)$. Hence A is closed under $f^{\mathcal{B}}$.

Claim 2: $\mathcal{A}_A \models \phi$ iff $\mathcal{B}_A \models \phi$ for every sentence ϕ .

Induct on ϕ : Base cases, negation and conjunction are clear.

Consider $\phi = \exists x \psi(x)$.

$$\mathcal{A}_A \models \phi \Rightarrow \mathcal{A}_A \models \psi(a) \text{ for some } a \in A \Rightarrow \mathcal{B}_A \models \phi.$$

Conversely,

$$\mathcal{B}_A \models \phi$$

$\Rightarrow \psi(x)$ is satisfiable in \mathcal{B}

$\Rightarrow \psi(x)$ is satisfied by some $a \in A$ by assumption

$$\Rightarrow \mathcal{A}_A \models \phi$$

Small elementary substructures from the Tarski-Vaught test

Corollary

Let S be a subset of an \mathcal{L} -structure \mathcal{B} .

Then \mathcal{B} has an elementary substructure \mathcal{A} containing S of cardinality at most $\max(|S|, |\mathcal{L}|, \aleph_0)$.

Proof.

Construct A as union of an ascending sequence

$$S = S_0 \subseteq S_1 \subseteq \dots$$

Assume S_i is already defined. For every $\mathcal{L} \cup \{S_i\}$ -formula $\phi(x)$ that is satisfiable in \mathcal{B} , choose $a_\phi \in B$ that satisfies $\phi(x)$.

Let $S_{i+1} := S_i \cup \{a_\phi \mid \phi \text{ is satisfiable}\}$.

Then $A := \bigcup S_i$ is the universe of an elementary substructure \mathcal{A} by the Tarski-Vaught test.

Since there are $\kappa := \max(|S|, |\mathcal{L}|, \aleph_0)$ many $\mathcal{L} \cup \{S\}$ -formulas, $|S_1| \leq \kappa$. By induction $|S_i| \leq \kappa$ and so $|A| \leq \kappa$. □