

6. Compactness Theorem

Henkin constructions

A theory T is **finitely satisfiable** if every finite subset of T is satisfiable.

Compactness Theorem

Every finitely satisfiable theory is satisfiable.

Henkin's proof idea: Build a model \mathcal{M} for T over a language expanded by enough constants to name every element in \mathcal{M} .

An \mathcal{L} -theory T has the **witness property** if for every \mathcal{L} -formula $\phi(y)$ with one free variable y there exists a constant $c \in \mathcal{L}$ s.t.

$$T \models (\exists y \phi(y)) \rightarrow \phi(c).$$

A theory T is **maximal** if for every ϕ either $\phi \in T$ or $\neg\phi \in T$.

Lemma (Marker 2.1.6)

Let T be maximal and finitely satisfiable, let $\Delta \subseteq T$ be finite.

If $\Delta \models \psi$, then $\psi \in T$.

Proof by contradiction.

Suppose $\psi \notin T$. Then $\neg\psi \in T$ by maximality and $\Delta \cup \{\neg\psi\}$ is a finite unsatisfiable subset of T . Contradiction. □

Maximal, fin satisfiable T with witness property has model

Lemma (Marker 2.1.7)

Let T be a maximal, finitely satisfiable \mathcal{L} -theory with witness property. Then T has a model \mathcal{M} .

Proof.

Let \mathcal{C} be the set of constant symbols in \mathcal{L} .

For $c, d \in \mathcal{C}$, define $c \sim d$ if $T \models c = d$.

Claim 1. \sim is an equivalence on \mathcal{C} by Lemma 2.1.6.

► **Universe of the model \mathcal{M} .**

$M := \mathcal{C} / \sim$, the set of equivalence classes c^* for $c \in \mathcal{C}$.

► **Interpretation of constant symbols.**

$$c^{\mathcal{M}} := c^*$$

► Interpretation of n -ary relation symbols R .

$$R^{\mathcal{M}} := \{(c_1^*, \dots, c_n^*) \mid R(c_1, \dots, c_n) \in T\}$$

Well-defined since $R(\bar{c}) \in T$ iff $R(\bar{d}) \in T$ for all $c_1 \sim d_1, \dots, c_n \sim d_n$ by Lemma 2.1.6.

► Interpretation of n -ary function symbols f .

$$f^{\mathcal{M}}(c_1^*, \dots, c_n^*) := d^* \text{ if } f(c_1, \dots, c_n) = d \in T$$

Well-defined since for all $\bar{c} = (c_1, \dots, c_n) \in \mathcal{C}^n$:

1. (Image exists)

$\emptyset \models \exists y f(\bar{c}) = y$ and the witness property for T yields that there is $d \in \mathcal{C}$ such that $f(\bar{c}) = d \in T$.

2. (Image is unique)

If $f(\bar{c}) = a \in T$ and $f(\bar{d}) = b \in T$ for $c_1 \sim d_1, \dots, c_n \sim d_n$, then $f(\bar{c}) = f(\bar{d}) \in T$ and $a \sim b$ by Lemma 2.1.6.

Note. \mathcal{M} is uniquely determined by \mathcal{L} and the atomic formulas in T .

The interpretation of terms is well-behaved

Claim 3. For any \mathcal{L} -term $t(x_1, \dots, x_n)$ and $c_1, \dots, c_n, d \in \mathcal{C}$

$$t^{\mathcal{M}}(c_1^*, \dots, c_n^*) = d^* \text{ iff } t(c_1, \dots, c_n) = d \in T.$$

\Leftarrow follows by induction on t .

\Rightarrow : Assume $t^{\mathcal{M}}(c_1^*, \dots, c_n^*) = d^*$.

By the witness property, we have $e \in \mathcal{C}$ such that $t(c_1, \dots, c_n) = e \in T$.

Then $t^{\mathcal{M}}(c_1^*, \dots, c_n^*) = e^*$ by \Leftarrow .

So $d^* = e^*$, $d = e \in T$ and $t(c_1, \dots, c_n) = d \in T$.

Show $\mathcal{M} \models T$

Claim 4. For any \mathcal{L} -formula $\phi(x_1, \dots, x_n)$ and $c_1, \dots, c_n \in \mathcal{C}$

$$\mathcal{M} \models \phi(\bar{c}^*) \text{ iff } \phi(\bar{c}) \in T.$$

Induction on Φ :

Base cases:

- ▶ Assume ϕ is $t_1 = t_2$. By the witness property we have $d_1, d_2 \in \mathcal{C}$ such that $t_1(\bar{c}) = d_1, t_2(\bar{c}) = d_2$ are in T .

Then $t_i^{\mathcal{M}}(\bar{c}^*) = d_i^*$ for $i = 1, 2$ by Claim 3 and

$$\mathcal{M} \models \phi(\bar{c}^*) \text{ iff } d_1^* = d_2^* \text{ iff } d_1 = d_2 \in T \text{ iff } t_1(\bar{c}) = t_2(\bar{c}) \in T$$

- ▶ Similar for $R(t_1, \dots, t_m)$.

Induction steps:

- ▶ ...
- ▶ ...
- ▶ If ϕ is $\exists y \psi(\bar{x}, y)$, then

$\mathcal{M} \models \phi(\bar{c}^*)$ iff $\mathcal{M} \models \psi(\bar{c}^*, d^*)$ for some $d \in \mathcal{C}$

iff $\psi(\bar{c}, d) \in T$ for some $d \in \mathcal{C}$ by induction assumption

iff $\exists y \psi(\bar{c}, y) \in T$ by witness property for \Leftarrow

Lemma 2.1.7 is proved. □

Review

1. Where was the **maximality** of T used?
2. Where was the **witness property** for T used?

Outlook

Every finitely satisfiable theory can be extended to a maximal, finitely satisfiable theory with witness property.