5. Godel's Completeness Theorem



Entailment and proofs

Let T be an L-theory, ¢ an L-sentence.
» How to show T [ ¢7
Find some L-structure M such that M = T but M [~ ¢.
» How to show T = ¢7

» Check all models of T7?
» Better: Prove ¢ from T.

A proof ¢ from T is a finite sequence of L-formulas v¥1,...,%,
such that

> ¢n = ¢ and
> ;€ T or y; follows from 1, ...,1¥;—1 by “simple logical
rules” for every i < n.

Then write T+ ¢ (read T proves o).



Sketch of a proof system

There are many choices for particular “simple logical rules”, e.g:
» Propositional rules: From ¢ and v conclude ¢ A .
» Equality rules: From A?_;s; =t; and R(si,...,sp) conclude
R(t1, ..., tn).
» Quantifier rules: From ¢(t, x) conclude 3y ¢(y, x).

Note: Proof systems are defined for f.o. formulas (not sentences)
and quantifiers require some care. See
» Enderton. A Mathematical Introduction to Logic. 2nd ed.,
Harcourt, 2002.
» Ebbinghaus, Flum, Thomas. Mathematical Logic. 3rd ed.,
Springer, 2021.



Properties of proof systems

» Proofs are finite.
» (Soundness) If T F ¢, then T = ¢.

» For finite T, there exists an algorithm that on input ¢ and
Y1, ...,%n, decides whether 1, ..., 1, is a proof of ¢ from T.



Theorem
For a computable theory T over a computable language L,

{o| TFo}
is recursively enumerable.
Proof.
Sketch algorithm that accepts ¢ if T - ¢; does not halt if T I/ ¢.
1. Let 0g,01,... be a computable enumeration of all finite sequences

of L-formulas [Exists since £ is computable].

2. At stage i, algorithm checks whether o; is a proof of ¢ from T.
[Check whether each 1 in o; is either in T (computable) or
follows from previous formulas by logical rules.]

3. Algorithm answers “yes” if o; is proof of ¢; else goes to stage
i+ 1. O]



Example

Since the axioms of ZFC are computable, {¢ | ZFC I~ ¢} is
recursively enumerable (but not computable if ZFC is consistent by
Godel's Second Incompleteness Theorem).



Godel's Completeness Theorem
For any L-theory T and any L-sentence ¢,

TE@Iff TE¢.

[« is soundness of the proof system; = is its completeness.|

Proof.
See Enderton or Ebbinghaus et al.

T is consistent if T I/ L.

Corollary (Henkin)
T is consistent iff T is satisfiable.

Proof.
< is clear.
= follows by contraposition from the Completeness Thm.



Compactness as a consequence of completeness

How to get models for infinite theories?

Compactness Theorem
T is satisfiable iff every finite subset of T is satisfiable.
Proof.

= clear
<« Assume T is not satisfiable.

1. Then T is inconsistent by the Completeness Theorem.
2. Let o be a proof for L from T.

3. The set A of 1» € T that occur in ¢ is finite and A F L.
4. Hence A is not satisfiable.



Why the name ‘Compactness Theorem'?

The Compactness Theorem states that the topological space of
complete L-theories

T :={Th(A) | Ais an L-structure}

is compact.
Basic open sets are Uy :={T € T | ¢ € T} for a sentence ¢.

1. Consider an open cover [Jges Uy = T for a set S of sentences,
i.e. every T € T contains some ¢ € S.

2. Suppose there is no finite subcover, i.e. for every finite A C S
we have T € T such that ANT =1, hence {—¢|p € A} C T.

3. Then {—¢ | ¢ € S} is satisfiable by the Compactness Theorem,
hence contained in some T € 7, which cannot be contained in
any Uy for ¢ € S. Contradiction.

4. Thus every open cover of T has a finite subcover.



