

3. First order theories

First order theories

1. An **\mathcal{L} -theory** is a set T of \mathcal{L} -sentences.
2. An \mathcal{L} -structure \mathcal{A} is a **model of** a theory T if $\mathcal{A} \models \phi$ for all $\phi \in T$ (write $\mathcal{A} \models T$, read \mathcal{A} **satisfies** T).
3. A theory T **entails** a sentence ϕ (write $T \models \phi$) if every model of T satisfies ϕ .
4. A theory T is **satisfiable** if T has a model.
Note T is satisfiable iff $T \not\models \perp$.
 - ▶ Assume T has a model \mathcal{A} . Then $\mathcal{A} \not\models \perp$. So $T \not\models \perp$.
 - ▶ Conversely, assume T has no models. Then $T \models \perp$ trivially.
5. A theory T is **complete** if for every sentence ϕ either $T \models \phi$ or $T \models \neg\phi$.
6. The **(complete) theory of a structure** \mathcal{A} is

$$\text{Th}(\mathcal{A}) = \{\phi \text{ sentence} \mid \mathcal{A} \models \phi\}.$$

- ▶ $\text{Th}(\mathcal{A})$ is complete since for every sentence ϕ either $\mathcal{A} \models \phi$ or not.

Elementary classes

- ▶ A class of \mathcal{L} -structures \mathcal{K} is an **elementary class** if there is an \mathcal{L} -theory T such that

$$\mathcal{K} = \{\mathcal{M} \mid \mathcal{M} \models T\}.$$

- ▶ Then T is a set of **axioms** for \mathcal{K} .

Example: Groups

Recall $\mathcal{L}_{\text{Groups}} = \{\cdot, -1, 1\}$. Let T be the set containing

- ▶ $\forall x \forall y \forall z \ x(yz) = (xy)z$
- ▶ $\forall x \ 1x = x$
- ▶ $\forall x \ x^{-1}x = 1$

Then $\mathcal{A} \models T$ iff \mathcal{A} is a group.

- ▶ T is satisfiable (every group is a model).
- ▶ $T \models \forall x \ x1 = x$ and $T \models \forall x \ xx^{-1} = 1$.
- ▶ T is not complete.

E.g. for $\phi = \forall x \forall y \ xy = yx$ we have $T \not\models \phi$ and $T \not\models \neg\phi$ since there are non-abelian and abelian groups

Example: Graphs

Recall $\mathcal{L}_{\text{Graph}} = \{E\}$.

Simple undirected graphs are axiomatized by

- ▶ $\forall x \neg E(x, x)$
- ▶ $\forall x \forall y (E(x, y) \rightarrow E(y, x))$

Example: Algebraically closed fields (ACF)

A field F is **algebraically closed** if every non-constant polynomial over F has a root in F .

Algebraically closed fields (ACF) are axiomatized by the usual first order field axioms and

$$\blacktriangleright \forall a_0 \dots \forall a_n \exists x \ x^{n+1} + \sum_{i=0}^n a_i x^i = 0$$

for all $n \in \mathbb{N}$.

Example: Zermelo Fraenkel set theory

ZF is an infinite set of first order sentences over the language $\{\in\}$,
e.g.

- ▶ $\exists x \forall y \neg(y \in x)$
- ▶ $\forall x \forall y (\forall z z \in x \leftrightarrow z \in y) \rightarrow x = y$
- ▶ ...

Is ZF satisfiable? Complete?

Example: Computability

Consider \mathbb{N} as structure over $\mathcal{L} = \{+, \cdot, 0, 1\}$.

- ▶ Definable subsets of \mathbb{N} are called **arithmetical** in CS.
- ▶ A subset S of \mathbb{N}^k is **decidable (computable, recursive)** if there exists an algorithm that on input $x \in \mathbb{N}^k$ answers “yes” if $x \in S$ and “no” if $x \notin S$.
- ▶ There exists an \mathcal{L} -formula $T(e, x, s)$ such that $\mathbb{N} \models T(e, x, s)$ iff the **Turing machine with code** e halts on input x in $\leq s$ steps.
- ▶ Hence the **Halting Problem**

$$H = \{(e, x) \in \mathbb{N}^2 \mid T(e, x, s) \text{ for some } s \in \mathbb{N}\}$$

is definable.

- ▶ Fact: The Halting Problem is undecidable.

Theorem

The theory of the natural numbers $(\mathbb{N}, +, \cdot, 0, 1)$ is undecidable.

- ▶ A subset S of \mathbb{N}^k is **recursively enumerable** if there exists an algorithm that enumerates the elements in S .
- ▶ Fact: By Matijasevič's solution to **Hilbert's 10th Problem**, $S \subseteq \mathbb{N}^k$ is recursively enumerable iff S is **diophantine**, i.e., there exists a polynomial $p(x_1, \dots, x_k, y_1, \dots, y_\ell)$ over \mathbb{Z} such that

$$S = \{(a_1, \dots, a_k) \in \mathbb{N}^k \mid \mathbb{N} \models \exists y_1 \dots \exists y_\ell p(a_1, \dots, a_k, y_1, \dots, y_\ell) = 0\}.$$