

1. Structures and theories

Languages

A **language (signature)** \mathcal{L} is a set of

1. function symbols f , each with an integer arity $n_f \geq 1$,
2. relation symbols R , each with an integer arity $n_R \geq 1$, and
3. constant symbols (function symbols of arity 0).

Example

1. $\mathcal{L}_{\text{Graph}} = \{E\}$
2. $\mathcal{L}_{\text{Group}} = \{\cdot, ^{-1}, 1\}$
3. $\mathcal{L}_{\text{Ring}} = \{+, -, 0, \cdot, 1\}$
4. $\mathcal{L}_{\text{LO}} = \{<\}$
5. $\mathcal{L}_{\text{ORing}} = \mathcal{L}_{\text{Ring}} \cup \mathcal{L}_{\text{LO}}$
6. $\mathcal{L}_{\text{Set}} = \{\in\}$
7. $\mathcal{L}_{\text{PSet}} = \emptyset$

Here $\cdot, +$ are binary function symbols, $^{-1}, -$ are unary function symbols, $E, <, \in$ are binary relation symbols, $0, 1$ are constants.

Structures

For a language \mathcal{L} , an **\mathcal{L} -structure** \mathcal{M} is given by

1. a nonempty set M , the **universe (domain)** of \mathcal{M} ,
2. a function $f^{\mathcal{M}}: M^{n_f} \rightarrow M$ for each function symbol $f \in \mathcal{L}$,
3. a set $R^{\mathcal{M}} \subseteq M^{n_R}$ for each relation symbol $R \in \mathcal{L}$,
4. an element $c^{\mathcal{M}} \in M$ for each constant symbol $c \in \mathcal{L}$.

$f^{\mathcal{M}}, R^{\mathcal{M}}, c^{\mathcal{M}}$ are the **interpretations** of the symbols f, R, c in \mathcal{M} .

Conventions

We write $\mathcal{M} = (M, f_1^{\mathcal{M}}, \dots, R_1^{\mathcal{M}}, \dots, c_1^{\mathcal{M}}, \dots)$, omitting superscripts when the structure is clear from context.

A, B, M, N, \dots denote the universes of $\mathcal{A}, \mathcal{B}, \mathcal{M}, \mathcal{N}, \dots$

Structures without relation symbols are **algebras**.

Structures without function symbols are **relational structures**.

Example: Groups

Choose an appropriate language, like $\mathcal{L}_{\text{Group}} = \{\cdot, ^{-1}, 1\}$ for \cdot binary, $^{-1}$ unary, 1 a constant.

1. $(\mathbb{R}, \cdot, ^{-1}, 1)$ is an $\mathcal{L}_{\text{Group}}$ -structure with the usual interpretation of function symbols.
2. $(\mathbb{Z}, +, -, 0)$ is an $\mathcal{L}_{\text{Group}}$ -structure where we interpret \cdot as addition, $^{-1}$ as additive inverse, 1 as zero.
3. $(\mathbb{N}, +, 0, 0)$ where we interpret $^{-1}$ as constant zero map is an $\mathcal{L}_{\text{Group}}$ -structure, but not a group.

Note: Languages are pure syntax. Symbols are not associative, etc. Their interpretation for a specific structure may or may not be.

Example: Graphs, order

- ▶ A **(simple undirected) graph** (V, E) consists of a set of vertices V and a set of edges E (2-element subsets of V), hence can be modelled by a structure with universe V and a single binary relation.
- ▶ A **(partial) order**, like $(\mathbb{Z}, <)$, can be modelled by a structure with universe \mathbb{Z} and a single binary relation $\{(a, b) \in \mathbb{Z}^2 : a < b\}$.

Substructures

An \mathcal{L} -structure \mathbf{A} is a **substructure** of an \mathbf{L} -structure \mathbf{B} (\mathbf{B} is an **extension** of \mathbf{A}) if

1. $A \subseteq B$,
2. for each relation $R \in \mathcal{L}$ and all tuples a over A ,
 $a \in R^{\mathbf{A}}$ iff $a \in R^{\mathbf{B}}$,
3. for each function $f \in \mathcal{L}$ and all tuples a over A we have
 $f^{\mathbf{A}}(a) \in A$,
4. for each constant $c \in \mathcal{L}$ we have $c^{\mathbf{A}} = c^{\mathbf{B}}$.

Example

- ▶ For our choice $\mathcal{L}_{\text{Group}}$, subgroups of a group
- ▶ Subgraphs of a graph

Homomorphisms

For \mathcal{L} -structures \mathbf{A}, \mathbf{B} , an **\mathcal{L} -homomorphism** h from \mathbf{A} to \mathbf{B} is a map $h: A \rightarrow B$ that **preserves** functions, relations, constants in \mathcal{L} , i.e.,

1. for each relation $R \in \mathcal{L}$ and every tuple (a_1, \dots, a_{n_R}) over A , if $(a_1, \dots, a_{n_R}) \in R^{\mathbf{A}}$, then $(h(a_1), \dots, h(a_{n_R})) \in R^{\mathbf{B}}$,
2. for each function $f \in \mathcal{L}$ and every tuple (a_1, \dots, a_{n_f}) over A we have $h(f^{\mathbf{A}}(a_1, \dots, a_{n_f})) = f^{\mathbf{B}}(h(a_1), \dots, h(a_{n_f}))$,
3. for each constant $c \in \mathcal{L}$ we have $h(c^{\mathbf{A}}) = c^{\mathbf{B}}$.

We write $h: \mathbf{A} \rightarrow \mathbf{B}$ for homomorphisms.

$h: \mathbf{A} \rightarrow \mathbf{B}$ is an **\mathcal{L} -embedding** if h is injective and for each relation $R \in \mathcal{L}$ and every tuple (a_1, \dots, a_{n_R}) over A

$$(a_1, \dots, a_{n_R}) \in R^{\mathbf{A}} \text{ iff } (h(a_1), \dots, h(a_{n_R})) \in R^{\mathbf{B}}$$

(h preserves and **reflects** R)

Example

- ▶ Injective group homomorphisms
- ▶ Bijective graph homomorphisms

Terms

Inductive definition: The set of **\mathcal{L} -terms** is the smallest set \mathcal{T} such that

1. $c \in \mathcal{T}$ for each constant symbol $c \in \mathcal{L}$,
2. each variable symbol $x_i \in \mathcal{T}$ for $i = 1, 2, \dots$,
3. for each function symbol $f \in \mathcal{L}$ and $t_1, \dots, t_{n_f} \in \mathcal{T}$, also $f(t_1, \dots, t_{n_f}) \in \mathcal{T}$.

Example

► Polynomials over a ring \mathcal{R}

► $\mathcal{L}_{\text{Graph}}$ -terms

Induced term functions

For an \mathcal{L} -structure \mathbf{A} and variables x_1, \dots, x_n , any term $t(x_1, \dots, x_n)$ induces a function

$$t^{\mathbf{A}}: A^n \rightarrow A$$

as follows:

1. if t is a constant $c \in \mathcal{L}$, then $t^{\mathbf{A}}(a_1, \dots, a_n) = c^{\mathbf{A}}$;
2. if t is a variable x_i , then $t^{\mathbf{A}}(a_1, \dots, a_n) = a_i$;
3. if $t = f(t_1, \dots, t_{n_f})$ for a function $f \in \mathcal{L}$, then
$$t^{\mathbf{A}}(a_1, \dots, a_n) = f^{\mathbf{A}}(t_1^{\mathbf{A}}(a_1, \dots, a_n), \dots, t_{n_f}^{\mathbf{A}}(a_1, \dots, a_n))$$

for all $a_1, \dots, a_n \in A$.

Example

Terms x^p and x

Formulas

What can we express in \mathcal{L} ?

Recursive definition: An **\mathcal{L} -formula** in variables x_1, \dots, x_n is one of the following:

1. $t_1 = t_2$ for \mathcal{L} -terms t_1, t_2 in x_1, \dots, x_n ,
2. $R(t_1, \dots, t_{n_R})$ for a relation $R \in \mathcal{L}$ and \mathcal{L} -terms t_1, \dots, t_{n_R} in x_1, \dots, x_n ,
3. $\neg\phi$ for a formula ϕ in x_1, \dots, x_n ,
4. $\phi \wedge \psi$ for formulas ϕ, ψ in x_1, \dots, x_n ,
5. $\exists y \phi$ for a formula ϕ in distinct variables x_1, \dots, x_n, y .

A variable y is **bound** in an \mathcal{L} -formula ψ if some subformula of ψ is of the form $\exists y \phi$.

For a formula ψ in x_1, \dots, x_n , no variable x_1, \dots, x_n is bound; they are **free** in ψ .

A **sentence** is a formula without free variables.

Shorthand notation

We write

1. $\phi \vee \psi$ for $\neg(\neg\phi \wedge \neg\psi)$
2. $\forall y \phi$ for $\neg(\exists y \neg\phi)$
3. $\phi \rightarrow \psi$ for $\neg\phi \vee \psi$
4. $\phi \leftrightarrow \psi$ for $(\phi \rightarrow \psi) \wedge (\psi \rightarrow \phi)$
5. $\bigwedge_{i=1}^k \phi_i$ for $(\dots((\phi_1 \wedge \phi_2) \wedge \phi_3) \dots \wedge \phi_k)$
6. $\bigvee_{i=1}^k \phi_i$ for $(\dots((\phi_1 \vee \phi_2) \vee \phi_3) \dots \vee \phi_k)$
7. \perp for $\exists x x \neq x$
8. \top for $\neg\perp$

Example

Some $\mathcal{L}_{\text{ORing}}$ -formulas

- ▶ $x_1 = 0 \vee x_1 > 0$
- ▶ $\exists x_1 x_1 \cdot x_1 = -1$
- ▶ $\forall x_1 (x_1 = 0 \vee \exists x_2 x_1 x_2 = 1)$