

Math 2001 - Assignment 5

Due February 18, 2026

- (1) Let $f: \mathcal{A} \rightarrow \mathcal{B}$ and $g: \mathcal{B} \rightarrow \mathcal{C}$ be embeddings. Show that if g and gf are elementary embeddings, then also f is an elementary embedding.
- (2) Recall: the language of vector spaces over a field F consists of $+$ and for every $a \in F$ a unary symbol s_a that interprets as scaling a vector x by a .
 - (a) For an F -vector space V with basis B , give $|V|$ in terms of $|F|$ and $|B|$.
 - (b) For which infinite cardinalities κ is the theory T of F -vector spaces κ -categorical?
 - (c) Why is T not complete? Describe the completions of T (i.e. the complete theories that contain T) by a model each.
Careful about the case that F is finite!
- (3) Which of the following theories are \aleph_0 -categorical?
 - (a) ACF_p for $p = 0$ or p prime,
 - (b) $\text{Th}(\mathbb{Z}, <)$
- (4) [1, Exercise 2.3.3] (For students who have taken Graduate Algebra 2)
A $\forall\exists$ -sentence is of the form $\forall\bar{x}\exists\bar{y} \psi(\bar{x}, \bar{y})$ for an atomic formula ψ .
Show that an $\forall\exists$ -sentence ϕ in the language of rings, which is true for all finite fields, is true in all algebraically closed fields.
Hint: Show that ϕ holds in the algebraic closure of every field F_p of prime order p .

REFERENCES

[1] Tent, Ziegler. A Course in Model Theory. Lecture Notes in Logic, Cambridge, 2012.