

Math 2001 - Assignment 3

Due February 4, 2026

(1) The characteristic of a field \mathcal{F} is the smallest positive integer n such that

$$\underbrace{1 + \cdots + 1}_{n\text{times}} = 0$$

if such an n exists; else the characteristic of \mathcal{F} is 0.

Let T be a theory that contains the theory of fields.

(a) Show that if T has models of arbitrarily large positive characteristic, then T has a model of characteristic 0.
(b) Show that there exists no finite theory whose models are exactly the fields of characteristic 0.

(2) (A non-standard model \mathcal{M} for arithmetic) Let $\mathbb{N} = (\mathbb{N}, +, \cdot, 0, 1, <)$ with the standard interpretation of symbols. Construct a countable structure \mathcal{M} over $\mathcal{L} = \{+, \cdot, 0, 1, <\}$ such that $\mathcal{M} \equiv \mathbb{N}$ but $\mathcal{M} \not\cong \mathbb{N}$ as follows:

(a) Let \mathcal{L}' be the expansion of \mathcal{L} by a new constant symbol c , and let

$$S := \{1 < c, 1 + 1 < c, 1 + 1 + 1 < c, \dots\}.$$

Show that $\text{Th}(\mathbb{N}) \cup S$ has a countable model \mathcal{M}' .

(b) Show that the \mathcal{L} -reduct \mathcal{M} of \mathcal{M}' is elementary equivalent to \mathbb{N} .
(c) Show that \mathcal{M} is not isomorphic to \mathbb{N} .

(3) For constant symbols c_1, c_2, \dots , let \mathcal{A} be the expansion of $(\mathbb{Q}, <)$ with $c_n^{\mathcal{A}} = \frac{1}{n}$ for $n \geq 1$.

Show that there exists a model \mathcal{B} of $\text{Th}(\mathcal{A})$ with an element $\varepsilon \in B$ such that $\mathcal{B} \models 0 < \varepsilon$ and $\mathcal{B} \models \varepsilon < c_n$ for all integers $n \geq 1$.

(4) [1, Ex. 2.2.2] A class \mathcal{C} of \mathcal{L} -structures is *finitely axiomatisable* if \mathcal{C} is the class of models of a finite theory.

Show that \mathcal{C} is finitely axiomatisable iff both \mathcal{C} and its complement \mathcal{C}' in the class of all \mathcal{L} -structures forms an elementary class.

Hint: For \Leftarrow use the Compactness Theorem.

REFERENCES

[1] Tent, Ziegler. A Course in Model Theory. Lecture Notes in Logic, Cambridge, 2012.