Math 4140 - Assignment 10

Due April 5, 2024

(1) Show that the entries for the character table of the symmetric group S_n are all real.

Note: In fact they can be shown to be integers.

Solution. In S_n two elements are conjugate iff they have the same cycle structure. Hence any permutation $g \in S_n$ is conjugate to its inverse. Thus

$$\chi(g) = \chi(g^{-1}) = \overline{\chi(g)}$$

is real.

- (2) Complete the character table of S_4 from class, that is,
 - (a) lift the irreducible characters from $S_4/V_4 \cong S_3$ to S_4 ,
 - (b) show that the permutation character-1 is irreducible,
 - (c) compute the remaining irreducible character using column orthogonality.

Solution. See the table on p. 180 of [1].

- (3) Let χ be a character of G such that $\chi(g)$ is a non-negative real for all $g \in G$.
 - (a) Show that if χ is irreducible, then χ is trivial.
 - Hint: Use row orthogonality.
 - (b) Give an example of a non-trivial χ with this property.

Solution. (a) Let χ_1 be the trivial character. Then

$$\langle \chi_1, \chi \rangle = \frac{1}{|G|} \sum_{g \in G} \chi(g) > 0.$$

So χ_1 is a constituent of χ . If χ is irreducible, this means that $\chi = \chi_1$

(b) regular character.

(4) Show

$$Z(G) = \bigcap_{\chi \in \operatorname{Irr} G} \{ g \in G : |\chi(g)| = \chi(1) \}.$$

Hint: Use Theorem 13.11.

Solution. Let $IrrG = \{\chi_1, \ldots, \chi_k\}$ with corresponding irreducible representations $\varphi_1, \ldots, \varphi_k$. By Thm 13.11,

 $|\chi_i(g)| = \chi_i(1)$ iff $\varphi_i(g)$ is a scalar multiple of the identity matrix.

The latter is equivalent to $\varphi_i(g) \in Z(\varphi_i(G))$ by Schur's Lemma.

Note that $\varphi_i(q) \in Z(\varphi_i(G))$ for all $i \leq k$ iff $\rho(q)$ is central in $\rho(G)$ for the regular representation ρ of G. Since ρ is faithful, this is equivalent to $q \in Z(G)$.

(5) [1, Exercise 17.2]

Solution. in [1]

(6) [1, Exercise 17.5]. Also determine the center and the derived subgroup of D_8 from its character table.

Solution. Normal subgroups are listed in [1]. Further the derived subgroup is the intersection of the kernels of the linear characters χ_1, \ldots, χ_4 , which yields $D'_8 = \{1, a^2\}$.

			-		-	
D (4) 1	$-\pi(\alpha)$	(1 9)	11		
	1 wo goo th	at $Z(I_{\perp})$ —	JI <u>a</u> ~ (. og woll		
DVV4	i we see un	at $\Delta(G) =$	11.0	as wen.		

	g_1	g_2	g_3	g_4	g_5	g_6	g_7
χ_1	1	1	1	1	1	1	1
χ_2	1	1	1	ω	ω^2	ω^2	ω
χ_3	1	1	1	ω^2	ω	ω	ω^2
χ_4	3	3	-1	0	0	0	0
χ_5	2	-2	0	-1	-1	1	1
χ_6	2	-2	0	$-\omega$	$-\omega^2$	ω^2	ω
χ_7	2	-2	0	$-\omega^2$	$-\omega$	ω	ω^2

(7) Consider the character table of a group G. Here $\omega = e^{2\pi i/3}$:

(a) Determine the sizes of all conjugacy classes of G.

Solution. Column orthogonality yields (note $\bar{\omega} = \omega^2$).

	g_1	g_2	g_3	g_4	g_5	g_6	g_7
centralizer size	24	24	4	6	6	6	6
class size	1	1	6	4	4	4	4

(b) Determine all normal subgroups of G (in particular Z(G)) and G') and their sizes.

Solution. Take all possible intersections of the kernels of the irreducible characters. There are 2 non-trivial proper subgroups, namely

 $\{g_1, g_2\} = \bigcap_{i=1}^4 \chi_i = Z(G)$ of size 2 G' = intersection of kernels of linear characters = union of the classes of g_1, g_2, g_3 , which has size 1 + 1 + 6 = 8

(c) Explain why G is a semidirect product of Sylow subgroups.

Solution. Since G' has size 8 and index 3 in G, it is a normal Sylow 2-subgroup. For H a Sylow 3-subgroup of G, we have G = G'H is a semidirect product.

(d) Explain why G has a quotient isomorphic to A_4 .

Solution. G/Z(G) has size 12 and is a semidirect product of a normal subgroup of order 4 and a group of order 3 by (c). Note that G/Z(G) is not abelian because otherwise G would have 12 linear characters. So G/Z(G) must be a non-abelian semidirect product of $\mathbb{Z}_2 \times \mathbb{Z}_2$ by \mathbb{Z}_3 . The only such group is A_4 .

Note that this is the character table of SL(2,3).

References

 G. James and M. Liebeck. Representations and characters of groups. Cambridge University Press, second edition, 2001.