Math 4140 - Assignment 8

Due March 11, 2024

All representations are over \mathbb{C} .

(1) (Bonus) For a group G let G' (the **derived subgroup** of G) be generated by all commutators

$$[g,h] := g^{-1}h^{-1}gh$$
 for $g,h \in G$.

Show that G' is a the smallest normal subgroup of G with abelian quotient, that is,

- (a) G' is normal in G;
- (b) for any normal subgroup N of G, we have G/N abelian iff $G' \leq N$.

Why does this imply that the kernel of every degree 1 representation of G contains G'?

(2) Let G be a finite group. Show that |G:G'| is the number of inequivalent representations of degree 1 of G.

Hint: For $N \leq G$, a homomorphism $\varphi \colon G/N \to H$ lifts to a homomorphism $\hat{\varphi} \colon G \to H, x \mapsto \varphi(xN)$.

Use this to show that every degree 1 representation of G/G' lifts to a degree 1 representation of G. Then show that G has no other degree 1 representations by problem (1).

- (3) Use the description of the conjugacy classes in [1, Example 12.18] to show:
 - (a) A_4 has no subgroup of order 6. (This would be normal. Why?)
 - (b) A_5 is simple.
- (4) Give representatives for the conjugacy classes of S_6 and of A_6 .
- (5) Give the irreducible characters of \mathbb{Z}_4 .
- (6) Let $D_{12} = \langle a, b : a^6 = 1, b^2 = 1, b^{-1}ab = a^{-1} \rangle$, let $\omega := e^{2\pi i/3}$ and let ρ be a representation of D_{12} with

$$a\rho = \begin{pmatrix} \omega & 0\\ 0 & \omega^{-1} \end{pmatrix}, \quad b\rho = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}.$$

Determine the conjugacy classes of D_{12} , the character of ρ and its kernel.

(7) Let $\varphi \colon \mathbb{R}^3 \to \mathbb{R}^3$ be a rotation by an angle α that fixes an axis through the origin. Explain that there is a basis B of \mathbb{R}^3 such

that

$$[\varphi]_B = \begin{pmatrix} \cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Compute its trace.

(8) (Continuation of 7.6c) Recall that the alternating group A_4 has 4 conjugacy classes with representatives (), (12)(34), (123), (132).

Labelling the 4 corners of a regular tetrahedron 1, 2, 3, 4, one sees that the group of its rotations is isomorphic to A_4 . In particular the rotations are:

- (a) the identity (corresponding to ()),
- (b) rotations by $\pm 2\pi/3$ fixing an axis through one corner and the center of the opposite face (8 elements, corresponding to the 3-cycles),
- (c) rotations by π fixing an axis through the midpoints of 2 opposite edges (3 elements, swapping the corners of these edges, like (12)(34)).

Let ρ be the degree 3 representation of A_4 by these rotation matrices. Determine its character χ .

Hint: Don't write down any rotation matrices but use (7).

References

 G. James and M. Liebeck. Representations and characters of groups. Cambridge University Press, second edition, 2001.

2