Math 4140 - Assignment 2

Due January 31, 2024

- (1) Let $m, n \in \mathbb{N}, F$ a field and $A \in \operatorname{GL}(n, F)$. Show that $\rho \colon \mathbb{Z}_m \to \operatorname{GL}(n, F), [x] \mapsto A^x,$
 - is a representation iff $A^m = I$ (the identity matrix).
- (2) Let $m \in \mathbb{N}$. Show
 - (a) $(\mathbb{Z}_m, +)$ has a faithful representation of degree 1 over \mathbb{R} iff $m \leq 2$.
 - (b) $(\mathbb{Z}_m, +)$ has a faithful representation of degree 2 over \mathbb{R} .
- (3) Let $D_{2n} = \langle a, b : a^n = 1, b^2 = 1, b^{-1}ab = a^{-1} \rangle$. Show that there is a representation

$$\rho \colon D_{2n} \to \operatorname{GL}(1,\mathbb{R})$$
 with $a\rho = (1), b\rho = (-1).$

What are $\ker \rho$, $\operatorname{im} \rho$?

- (4) Let ρ be a representation of G of degree 1 over \mathbb{C} . Show
 - (a) $G/\ker\rho$ is abelian.
 - (b) If G is finite, then $G/\ker\rho$ is cyclic.
- (5) The symmetric group S_3 has a presentation

$$S_3 = \langle a, b : a^2 = 1, b^2 = 1, (ab)^3 = 1 \rangle.$$

Show that there is a representation

$$\rho \colon S_3 \to \operatorname{GL}(2,\mathbb{R}) \text{ with } a\rho = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, b\rho = \begin{pmatrix} 1 & -1 \\ 0 & -1 \end{pmatrix}.$$

Is ρ faithful?

(6) Give some faithful representation of D_8 of degree 3 over \mathbb{C} .