REVIEW: RELATIONS

PETER MAYR (MATH 3140, CU BOULDER)

1. Basic properties

Definition. Let A, B be sets. A **relation** R from A to B is a subset of $A \times B$.

For $(a, b) \in R$, we say a and b are related and also write aRb. If A = B, then R is a relation on A.

Example. $R = \{(0,0), (0,1), (1,1)\}$ is a relation on $A = \{0,1\}$. Here 0R0, 0R1, 1R. This relation is also known as \leq .

Definition. Let R be a relation on A. Then

- (1) R is **reflexive** if $\forall x \in A : xRx$
 - (every element is related to itself)
- (2) R is **symmetric** if $\forall x, y \in A \colon xRy \Rightarrow yRx$ (if x is related to y, then also y is related to x)
- (3) R is **antisymmetric** if $\forall x, y \in A \colon (xRy \land yRx) \Rightarrow x = y$ (x is related to y and y is related to x only if x = y)
- (4) R is **transitive** if $\forall x, y, z \in A : (xRy \land yRz) \Rightarrow xRz$

Note that antisymmetric is not the same as 'not symmetric'.

Definition. A relation R on A is

- (1) an **equivalence relation** if R is reflexive, symmetric, transitive,
- (2) a partial order if R is reflexive, antisymmetric, transitive.

Example.

- (1) Equivalence relations are used for classifying elements of A. Examples are =, \equiv_n on $\mathbb{Z}(n \in \mathbb{N})$, has the same absolute value on \mathbb{R} , has the same cardinality on sets.
- (2) Partial orders are used for ordering elements of A. Examples are $=, \leq$ on \mathbb{R}, \mid on \mathbb{N}, \subseteq on sets

Date: February 11, 2024.

2. Equivalences and partitions

Definition. For an equivalence relation R on A and $a \in A$,

$$[a]_R := \{x \in A : xRa\}$$

is the **equivalence class** of a.

Theorem 1. Let R be an equivalence on A, let $a, b \in A$. Then

- (1) [a] = [b] iff aRb;
- (2) $[a] \cap [b] = \emptyset$ iff $a \not R b$;
- $(3) \bigcup_{a \in A} [a] = A.$

Hence the whole set A is partitioned into disjoint equivalence classes.

Definition. A **partition** of a set A is a set of non-empty subsets $\{A_i : i \in I\}$ such that

- (1) $A_i \cap A_j = \emptyset$ for all distinct $i, j \in I$,
- $(2) \bigcup_{i \in I} A_i = A.$

Every equivalence on A gives a partition of A and conversely.

Corollary 2. Let R be an equivalence on A. Then the set of equivalence classes $\{[a]: a \in A\}$ is a partition of A.

Theorem 3. Let $\{A_i : i \in I\}$ a partition of A. For $a, b \in A$ define $a \sim b$ if $a, b \in A_i$ for some $i \in I$.

Then \sim is an equivalence relation on A with classes $\{A_i : i \in I\}$.

3. Integers modulo n

One particular important equivalence relation is \equiv_n on \mathbb{Z} for $n \in \mathbb{N}$. The class of $a \in \mathbb{Z}$ is

$$[a] = \{a + zn : z \in \mathbb{Z}\}.$$

Note [n] = [0]. The set of classes

$$\mathbb{Z}_n := \{[0], [1], [2], \dots, [n-1]\}$$

is called the **integers modulo** n.

Define $+, -, \cdot$ on \mathbb{Z}_n by

$$[a] + [b] := [a + b]$$

 $-[a] := [-a]$
 $[a] \cdot [b] := [a \cdot b]$

These operations are well-defined (independent of the choice of representatives for each class) and satisfy the same laws as $+, -, \cdot$ on \mathbb{Z} : associativity, commutativity, distributivity, etc.