Math 3140 - Practice Final

- (1) (a) Does S_5 contain an element of order 6? What about A_5 ? (b) Give a Sylow 5-subgroup of S_5 .
- (2) Let G be a group. Show that $\varphi \colon G \to G, x \mapsto x^{-1}$, is a homomorphism if and only if G is abelian.
- (3) Prove or provide a counter-example: Let G be a group. If N is an abelian normal subgroup of G and G/N is abelian, then G is abelian.
- (4) Let $K := \langle (1\ 2)(3\ 4), (1\ 3)(2\ 4) \rangle$. Determine |K| and the index of K in S_4 . What is K isomorphic to?
- (5) In how many ways can the vertices of a pentagon be colored in at most 2 colors up to symmetry?
- (6) Let $n \in \mathbb{N}$.
 - (a) Give a normal subgroup M of D_{4n} that is isomorphic to \mathbb{Z}_2 . Explain why M is normal.
 - (b) Give a normal subgroup N of D_{4n} that is isomorphic to D_{2n} . Explain why N is normal.
 - (c) What is $M \cap N$? Show that $D_{4n} \cong D_{2n} \times \mathbb{Z}_2$ if n is odd.
- (7) (a) How many abelian groups of order 200 are there up to isomorphism?
 - (b) Show that every group G of order 200 has some non-trivial proper normal subgroup N.
- (8) Let $U := \{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} : a, b, c \in \mathbb{R} \}$ denote the subring of $\mathbb{R}^{2 \times 2}$ containing all upper triangular matrices.
 - (a) Show that

$$\varphi \colon U \to U, \left(\begin{array}{cc} a & b \\ 0 & c \end{array} \right) \mapsto \left(\begin{array}{cc} a & 0 \\ 0 & c \end{array} \right),$$

is a unital ring homomorphism.

- (b) Determine $\ker \varphi$.
- (c) Show that $U/\ker \varphi$ is isomorphic to a direct product of rings. Which?